1,994 research outputs found

    A High-Order Numerical Method for the Nonlinear Helmholtz Equation in Multidimensional Layered Media

    Full text link
    We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newton's method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the "augmented" paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.Comment: 40 pages, 10 figure

    Singular solutions of the L^2-supercritical biharmonic Nonlinear Schrodinger equation

    Full text link
    We use asymptotic analysis and numerical simulations to study peak-type singular solutions of the supercritical biharmonic NLS. These solutions have a quartic-root blowup rate, and collapse with a quasi self-similar universal profile, which is a zero-Hamiltonian solution of a fourth-order nonlinear eigenvalue problem

    Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation

    Full text link
    We present new singular solutions of the biharmonic nonlinear Schrodinger equation in dimension d and nonlinearity exponent 2\sigma+1. These solutions collapse with the quasi self-similar ring profile, with ring width L(t) that vanishes at singularity, and radius proportional to L^\alpha, where \alpha=(4-\sigma)/(\sigma(d-1)). The blowup rate of these solutions is 1/(3+\alpha) for 4/d\le\sigma<4, and slightly faster than 1/4 for \sigma=4. These solutions are analogous to the ring-type solutions of the nonlinear Schrodinger equation.Comment: 21 pages, 13 figures, research articl

    Decoupling Transition I. Flux Lattices in Pure Layered Superconductors

    Full text link
    We study the decoupling transition of flux lattices in a layered superconductors at which the Josephson coupling J is renormalized to zero. We identify the order parameter and related correlations; the latter are shown to decay as a power law in the decoupled phase. Within 2nd order renormalization group we find that the transition is always continuous, in contrast with results of the self consistent harmonic approximation. The critical temperature for weak J is ~1/B, where B is the magnetic field, while for strong J it is~1/sqrt{B} and is strongly enhanced. We show that renormaliztion group can be used to evaluate the Josephson plasma frequency and find that for weak J it is~1/BT^2 in the decoupled phase.Comment: 14 pages, 5 figures. New sections III, V. Companion to following article on "Decoupling and Depinning II: Flux lattices in disordered layered superconductors

    Simulations of the Nonlinear Helmholtz Equation: Arrest of Beam Collapse, Nonparaxial Solitons, and Counter-Propagating Beams

    Full text link
    We solve the (2+1)D nonlinear Helmholtz equation (NLH) for input beams that collapse in the simpler NLS model. Thereby, we provide the first ever numerical evidence that nonparaxiality and backscattering can arrest the collapse. We also solve the (1+1)D NLH and show that solitons with radius of only half the wavelength can propagate over forty diffraction lengths with no distortions. In both cases we calculate the backscattered field, which has not been done previously. Finally, we compute the dynamics of counter-propagating solitons using the NLH model, which is more comprehensive than the previously used coupled NLS model.Comment: 6 pages, 6 figures, Lette

    Phase separation of a driven granular gas in annular geometry

    Full text link
    This work investigates phase separation of a monodisperse gas of inelastically colliding hard disks confined in a two-dimensional annulus, the inner circle of which represents a "thermal wall". When described by granular hydrodynamic equations, the basic steady state of this system is an azimuthally symmetric state of increased particle density at the exterior circle of the annulus. When the inelastic energy loss is sufficiently large, hydrodynamics predicts spontaneous symmetry breaking of the annular state, analogous to the van der Waals-like phase separation phenomenon previously found in a driven granular gas in rectangular geometry. At a fixed aspect ratio of the annulus, the phase separation involves a "spinodal interval" of particle area fractions, where the gas has negative compressibility in the azimuthal direction. The heat conduction in the azimuthal direction tends to suppress the instability, as corroborated by a marginal stability analysis of the basic steady state with respect to small perturbations. To test and complement our theoretical predictions we performed event-driven molecular dynamics (MD) simulations of this system. We clearly identify the transition to phase separated states in the MD simulations, despite large fluctuations present, by measuring the probability distribution of the amplitude of the fundamental Fourier mode of the azimuthal spectrum of the particle density. We find that the instability region, predicted from hydrodynamics, is always located within the phase separation region observed in the MD simulations. This implies the presence of a binodal (coexistence) region, where the annular state is metastable. The phase separation persists when the driving and elastic walls are interchanged, and also when the elastic wall is replaced by weakly inelastic one.Comment: 9 pages, 10 figures, to be published in PR

    High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension

    Full text link
    The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newton's method. Our numerical simulations show that Newton's method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.Comment: 47 pages, 8 figure

    Evaluation of the Multiplane Method for Efficient Simulations of Reaction Networks

    Full text link
    Reaction networks in the bulk and on surfaces are widespread in physical, chemical and biological systems. In macroscopic systems, which include large populations of reactive species, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations. However, many physical systems are partitioned into microscopic domains, where the number of molecules in each domain is small and fluctuations are strong. Under these conditions, the simulation of reaction networks requires stochastic methods such as direct integration of the master equation. However, direct integration of the master equation is infeasible for complex networks, because the number of equations proliferates as the number of reactive species increases. Recently, the multiplane method, which provides a dramatic reduction in the number of equations, was introduced [A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 (2004)]. The reduction is achieved by breaking the network into a set of maximal fully connected sub-networks (maximal cliques). Lower-dimensional master equations are constructed for the marginal probability distributions associated with the cliques, with suitable couplings between them. In this paper we test the multiplane method and examine its applicability. We show that the method is accurate in the limit of small domains, where fluctuations are strong. It thus provides an efficient framework for the stochastic simulation of complex reaction networks with strong fluctuations, for which rate equations fail and direct integration of the master equation is infeasible. The method also applies in the case of large domains, where it converges to the rate equation results

    Emergence of stability in a stochastically driven pendulum: beyond the Kapitsa effect

    Full text link
    We consider a prototypical nonlinear system which can be stabilized by multiplicative noise: an underdamped non-linear pendulum with a stochastically vibrating pivot. A numerical solution of the pertinent Fokker-Planck equation shows that the upper equilibrium point of the pendulum can become stable even when the noise is white, and the "Kapitsa pendulum" effect is not at work. The stabilization occurs in a strong-noise regime where WKB approximation does not hold.Comment: 4 pages, 7 figure
    • …
    corecore