297 research outputs found

    Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging

    Get PDF
    The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in phase retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test pattern, infinite depth of focus image of a thick object, and its high-resolution (~10 nm resolution) three-dimensional image. Developments on the structural imaging of low density aerogel samples are discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa

    Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations

    Full text link
    Numerically determined ionization rates for the field ionization of atomic hydrogen in strong and short laser pulses are presented. The laser pulse intensity reaches the so-called "barrier suppression ionization" regime where field ionization occurs within a few half laser cycles. Comparison of our numerical results with analytical theories frequently used shows poor agreement. An empirical formula for the "barrier suppression ionization"-rate is presented. This rate reproduces very well the course of the numerically determined ground state populations for laser pulses with different length, shape, amplitude, and frequency. Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in ps-format, submitted for publication to Physical Review A, WWW: http://www.physik.tu-darmstadt.de/tqe

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification

    Get PDF
    The next generation of high-energy petawatt (HEPW)-class lasers will utilize multilayer dielectric diffraction gratings for pulse compression, due to their high efficiency and high damage threshold for picosecond pulses. The peak power of HEPW lasers will be determined by the aperture and damage threshold of the final dielectric grating in the pulse compressor and final focusing optics. We have developed a short-pulse damage test station for accurate determination of the damage threshold of the optics used on future HEPW lasers. Our damage test station is based on a highly stable, high-beam-quality optical parametric chirped-pulse amplifier (OPCPA) operating at 1053 nm at a repetition rate of 10 Hz. We present the design of our OPCPA system pumped by a commercial Q-switched pump laser and the results of the full system characterization. Initial short-pulse damage experiments in the far field using our system have been performed

    Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials

    Full text link
    Using an efficient optimal control scheme to determine the exciting fields, we theoretically demonstrate the optical creation of vibrational intrinsic localized modes (ILMs) in anharmonic perfect lattices with realistic interatomic potentials. For systems with finite size, we show that ILMs can be excited directly by applying a sequence of femtosecond visible laser pulses at THz repetition rates. For periodic lattices, ILMs can be created indirectly via decay of an unstable extended lattice mode which is excited optically either by a sequence of pulses as described above or by a single picosecond far-infrared laser pulse with linearly chirped frequency. In light of recent advances in experimental laser pulse shaping capabilities, the approach is experimentally promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.
    • …
    corecore