4 research outputs found

    Role of fat-free mass index on amino acid loss during CRRT in critically Ill patients

    No full text
    Background and objectives: Amino acid (AA) loss is a prevalent unwanted effect of continuous renal replacement therapy (CRRT) in critical care patients, determined both by the machine set-up and individual characteristics. The aim of this study was to evaluate the bioelectrical impedance analysis-derived fat-free mass index (FFMI) effect on amino acid loss. Materials and methods: This was a prospective, observational, single sample study of critical care patients upon initiation of CRRT. AA loss during a 24 h period was estimated. Conventional determinants of AA loss (type and dose of CRRT, concentration of AA) and FFMI were entered into the multivariate regression analysis to determine the individual predictive value. Results: Fifty-two patients were included in the study. The average age was 66.06 ± 13.60 years; most patients had a high mortality risk with APAHCE II values of 22.92 ± 8.15 and SOFA values of 12.11 ± 3.60. Mean AA loss in 24 h was 14.73 ± 9.83 g. There was a significant correlation between the lost AA and FFMI (R = 0.445, B = 0.445 CI95%: 0.541–1.793 p = 0.02). Multivariate regression analysis revealed the independent predictors of lost AA to be the systemic concentration of AA (B = 6.99 95% CI:4.96–9.04 p = 0.001), dose of CRRT (B = 0.48 95% CI:0.27–0.70 p < 0.001) and FFMI (B = 0.91 95% CI:0.42–1.41 p < 0.001). The type of CRRT was eliminated in the final model due to co-linearity with the dose of CRRT. Conclusions: A substantial amount of AA is lost during CRRT. The amount lost is increased by the conventional factors as well as by higher FFMI. Insights from our study highlight the FFMI as a novel research object during CRRT, both when prescribing the dosage and evaluating the nutritional support needed

    Kinetics of SuPAR hemoadsorption in critical COVID-19 patients on renal replacement therapy

    No full text
    BACKGROUND: SARS-CoV-2 viral infection is associated with a rapid and vigorous systemic inflammatory response syndrome. Soluble urokinase-type plasminogen activator receptor (suPAR) is a novel biomarker, both indicative of inflammation and propagating it. Hemoadsorption has been proposed as a potential therapy in COVID-19 patients, therefore the aim of this study is to determine suPAR kinetics during hemoadsoprtion. METHODS: This was a prospective observational study of critical COVID-19 patients, enrolled when hemoperfusion therapy was initiated. Hemoadsorber was integrated into the continuous renal replacement therapy circuit. The first series of suPAR measurements was performed 10 minutes after the start of the session, sampling both incoming and outgoing lines of the adsorber. A second series of the measurements was performed beforefinishing the session with the same adsorber. Statistical significance level was set < 0.05. RESULTS: This study included 18 patients. In the beginning of the session the fraction of suPAR cleared across the adsorber was 29.5% [16-41], and in the end of the session it decreased to 7.2% [4-22], 4 times lower, p = 0.003. The median length of session was 21 hours, with minimal duration of 16 hours and maximal duration of 24 hours. The median suPAR before the procedure was 8.71 [7.18-10.78] and after the session was 7.35 [6.53-11.28] ng/ml. There was no statistically significant difference in suPAR concentrations before and after the session (p = 0.831). CONCLUSIONS: This study concluded that in the beginning of the hemoadsorption procedure significant amount of suPAR is removed from the circulation. However, in the end of the procedure there is a substantial drop in adsorbed capacity. Furthermore, despite a substantial amount of suPAR cleared there is no significant difference in systemic suPAR concentrations before and after the hemoadsorption procedure
    corecore