6 research outputs found

    NDs@PDA@ICG Conjugates for Photothermal Therapy of Glioblastoma Multiforme

    No full text
    The growing incidence of cancer is a problem for modern medicine, since the therapeutic efficacy of applied modalities is still not satisfactory in terms of patients’ survival rates, especially in the case of patients with brain tumors. The destructive influence of chemotherapy and radiotherapy on healthy cells reduces the chances of full recovery. With the development of nanotechnology, new ideas on cancer therapy, including brain tumors, have emerged. Photothermal therapy (PTT) is one of these. It utilizes nanoparticles (NPs) that can convert the light, preferably in the near-infrared (NIR) region, into heat. In this paper, we report the use of nanodiamonds (NDs) conjugated with biomimetic polydopamine (PDA) and indocyanine green (ICG) for glioblastoma cancer PTT therapy. The obtained materials were thoroughly analyzed in terms of their PTT effectiveness, as well as their physicochemical properties. The performed research demonstrated that NDs@PDA@ICG can be successfully applied in the photothermal therapy of glioblastoma for PTT and exhibited high photothermal conversion efficiency η above 40%, which is almost 10 times higher than in case of bare NDs. In regard to our results, our material was found to lead to a better therapeutic outcome and higher eradication of glioblastoma cells, as demonstrated in vitro

    Polyamidoamine Dendrimers Decorated Multifunctional Polydopamine Nanoparticles for Targeted Chemo- and Photothermal Therapy of Liver Cancer Model

    No full text
    The development of multifunctional drug delivery systems combining two or more nanoparticle-mediated therapies for efficient cancer treatment is highly desired. To face this challenge, a photothermally active polydopamine (PDA) nanoparticle-based platform was designed for the loading of chemotherapeutic drug and targeting of cancer cells. PDA spheres were first functionalized with polyamidoamine (PAMAM) dendrimers followed by the conjugation with polyethylene glycol (PEG) moieties and folic acid (FA) targeting ligand. The anticancer drug doxorubicin (DOX) was then absorbed on the particle surface. We performed the physico-chemical characterization of this versatile material and we assessed further its possible application in chemo- and photothermal therapy using liver cancer cell model. These nanoparticles exhibited high near-infrared photothermal conversion efficacy and allowed for loading of the drug, which upon release in specifically targeted cancer cells suppressed their growth. Using cell proliferation, membrane damage, apoptosis, and oxidative stress assays we demonstrated high performance of this nanosystem in cancer cell death induction, providing a novel promising approach for cancer therapy

    Polyamidoamine Dendrimers Decorated Multifunctional Polydopamine Nanoparticles for Targeted Chemo- and Photothermal Therapy of Liver Cancer Model

    No full text
    The development of multifunctional drug delivery systems combining two or more nanoparticle-mediated therapies for efficient cancer treatment is highly desired. To face this challenge, a photothermally active polydopamine (PDA) nanoparticle-based platform was designed for the loading of chemotherapeutic drug and targeting of cancer cells. PDA spheres were first functionalized with polyamidoamine (PAMAM) dendrimers followed by the conjugation with polyethylene glycol (PEG) moieties and folic acid (FA) targeting ligand. The anticancer drug doxorubicin (DOX) was then absorbed on the particle surface. We performed the physico-chemical characterization of this versatile material and we assessed further its possible application in chemo- and photothermal therapy using liver cancer cell model. These nanoparticles exhibited high near-infrared photothermal conversion efficacy and allowed for loading of the drug, which upon release in specifically targeted cancer cells suppressed their growth. Using cell proliferation, membrane damage, apoptosis, and oxidative stress assays we demonstrated high performance of this nanosystem in cancer cell death induction, providing a novel promising approach for cancer therapy

    Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy

    No full text
    Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-尾-cyclodextrin (SH-尾CD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine
    corecore