3 research outputs found

    Analysis of Cooling Curves of Nodular Cast Iron

    Get PDF
    The solidification of cast iron is a complex process with characterized entrance and marginal conditions. Thermal analysis is one of the processes that allows us to observe the solidification of alloys. There is a possibility of gaining information about the melted cast iron quality and predicting the final properties of the cast by evaluating the scanned cooling curves by solidification (stable and metastable system).This article deals with the study and analysis of cooling curves taken from production conditions of a foundry during ductile cast iron production. The aim is to discover the reproduction and reliability of the thermal analysis results of cast iron. The study of the progress of the cooling curves and their first derivation to follow the reactions of the curves to changing factors in the production process

    Utilization of Slags from Foundry Process

    Get PDF
    The melting of steel or cast iron is one step of the foundry process. The foundry industry uses different types of furnaces, and metallurgical slags are products of the pyrometallurgical processes defecting in these furnaces. Furnace slag is a non-metallic by-product that consists primarily of silicates, alumina silicates, and calcium-alumina-silicates. As a by-product of the melting process, furnace slags vary considerably in form depending on the melted metal furnace types, and slag cooling method used. Most quantity of slags from the foundry processes are created in a cupola furnace that is used for cast iron production. An electric arc furnace is usually used for steel production, but it can be used for cast iron production as well. Universal use features an electric induction furnace. Slags from the melting processes in a foundry can be in the form of gravel, or the slag from a cupola furnace can be granulated. The utilization of slags from foundry processes is very delimited in Slovakia because of their quantity. This article deals with the possibility of using foundry slag as a binder in civil engineering. A basic property of a binder in civil engineering is its hydraulicity, which can be given by compression strength. Four metallurgical slags were tested. The values of the compressive strength of the slags were low, but addition cement to the slags resulted in a strong increase in the value of the compressive strength

    Examination of Behavior from Selected Foundry Sands with Alkali Silicate-Based Inorganic Binders

    No full text
    The automotive industry is one of the most important customers for the foundry industry. In particular, casting of engine parts for combustion engines is one of the most demanding areas of casting technology. New generation of engine blocks and cylinder heads are getting geometrically more complicated in order to maintain or even increase performance. With the increased complexity, the strain for the casting molds is growing and the widely used technology of core making with standard silica sands is, for several applications, no longer reaching the demanded results. Furthermore, in last decade, there has been an effort in using inorganic binders in core making process, which brings along some additional technological challenges. In order to cope with these challenges, in this paper, silica and non-silica sands with round and angular grains as well as with fine and coarse grains are examined using an inorganic binder for strength, permeability, and thermal stability. The results shall provide useful information about the possibilities of application and combining different types of foundry sands, both silica and non-silica. With their impact on the selected sand core properties, they can help in solving problems in the core making process as well as reaching a high quality of the final product-casting
    corecore