17 research outputs found

    Safety out of control: dopamine and defence

    Full text link

    Bare soil cover and arbuscular mycorrhizal community in the first montane forest restoration in Central Argentina

    No full text
    Soil erosion affects extensive areas worldwide and must be urgently reduced promoting plant cover and beneficial microorganisms associated with plants, including arbuscular mycorrhizal fungi (AMF). In mountain environments, plant cover is difficult to enhance due to harsh conditions during the dry season and steep slopes. Our objective was to evaluate the percentage of the soil surface covered by plants and the AMF community associated with trees 12.5 years after planting during forest restoration efforts in microsites at different levels of soil degradation. The study was performed in the first montane forest restoration initiative of Central Argentina, where one of the trials consisted of planting Polylepis australis saplings at microsites with different levels of soil degradation: high, intermediate, and low. After 12.5 years, percentage of bare soil cover was significantly reduced by 36 and 37% in the high and intermediate degradation microsites, respectively. Low degradation microsites were initially very low in bare soil and did not significantly change. Mycorrhizal colonization, hyphae, vesicles, arbuscules, AMF diversity, and community structure were similar among microsite types. Percentage of hyphal entry points was higher at microsites with low degradation, number of spores was higher in high and intermediate degradation, and species richness was higher in high degradation. Acaulospora and Glomus were the most abundant genera in all microsites. We conclude that even in the most degraded microsites around 2.8% of the bare soil is covered by vegetation each year and that the arbuscular mycorrhizal community is highly tolerant and adapted to soils with different disturbance types.Fil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Divan, Adriana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Renison, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action

    No full text
    Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus–response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue
    corecore