2,803 research outputs found

    Adaptive Comparative Judgment for Polytechnic Transformation: Assessment across the Curriculum

    Get PDF
    The authors are investigating potential applications of adaptive comparative judgment (ACJ) across numerous environments and learning scenarios within the Purdue Polytechnic Institute as part of Purdue’s efforts to transform the undergraduate learning experience. Six courses or program areas were selectedfor the study, involving a wide variation in subjects, subject matter, and assessment artifacts. The authors anticipate that positive results from these pilot studies will encourage broader and deeper applications of ACJ in the Purdue Polytechnic, across Purdue University, and in other academic institutions. Results from these scenarios will be disseminated in future conferences and scholarly journals

    An exploration into the criteria used in assessing design activities with adaptive comparative judgment in technology education

    Get PDF
    peer-reviewedThe use of design assignments for teaching, learning, and assessment is considered a signature of technology education. However, there are difficulties in the valid and reliable assessment of features of quality within designerly outputs. In light of recent educational reforms in Ireland, which see the introduction of classroom-based assessments centring on design in the technology subjects, it is paramount that the implementation of design assessment is critically considered. An exploratory study was conducted with a first year cohort of initial technology teacher education students (N = 126) which involved them completing a design assignment and subsequent assessment process through the use of adaptive comparative judgement (ACJ). In considering the use of ACJ as a potential tool for design assessment at post-primary level, data analysis focused on criteria used for assessment. Results indicate that quantitative variables, i.e. the amount of work done, can significantly predict performance (R2 = .333, p < .001), however qualitative findings suggest that quantity may simply align with quality. Further results illustrate a significant yet practically meaningless bias may exist in the judgement of work through ACJ (ϕ = .082, p < .01) and that there was need to use varying criteria in the assessment of design outputs

    Enhanced radiative strength in the quasi-continuum of 117Sn

    Full text link
    Radiative strength functions of 117Sn has been measured below the neutron separation energy using the (3He,3He'gamma) reactions. An increase in the slope of the strength functions around E_gamma= 4.5 MeV indicates the onset of a resonance-like structure, giving a significant enhancement of the radiative strength function compared to standard models in the energy region 4.5 <= E_gamma <= 8.0 MeV. For the first time, the functional form of this resonance-like structure has been measured in an odd tin nucleus below neutron threshold in the quasi-continuum region.Comment: 4 pages, 3 figure

    Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh

    Get PDF
    Xcompact3D is a Fortran 90–95 open-source framework designed for fast and accurate simulations of turbulent flows, targeting CPU-based supercomputers. It is an evolution of the flow solver Incompact3D which was initially designed in France in the mid-90’s for serial processors to solve the incompressible Navier–Stokes equations. Incompact3D was then ported to parallel High Performance Computing (HPC) systems in the early 2010’s. Very recently the capabilities of Incompact3D have been extended so that it can now tackle more flow regimes (from incompressible flows to compressible flows at low Mach numbers), resulting in the design of a new user-friendly framework called Xcompact3D. The present manuscript presents an overview of Xcompact3D with a particular focus on its functionalities, its ready-to-run simulations and a few case studies to demonstrate its impact

    Evolution of level density step structures from 56,57-Fe to 96,97-Mo

    Full text link
    Level densities have been extracted from primary gamma spectra for 56,57-Fe and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on 57-Fe and 97-Mo targets. The level density curves reveal step structures above the pairing gap due to the breaking of nucleon Cooper pairs. The location of the step structures in energy and their shapes arise from the interplay between single-particle energies and seniority-conserving and seniority-non-conserving interactions.Comment: 9 pages, including 5 figure

    Hummingbirds Budget Energy Flexibly in Response to Changing Resources

    Full text link
    A key component of individual fitness is the ability to manage energy stores in response to variable resource availability, but because directly measuring energy budgets is difficult, daily energy management is rarely measured. Hummingbirds\u27 energy management is relatively simple to model compared to other endotherms because they have high mass‐specific metabolic rates and store little fat. We determined which aspects of the hummingbird daily energy budget (i.e. thermoregulation, daytime activity costs, night‐time costs) change at the individual level in response to environmental variation. We found that daily energy expenditure varied threefold in two populations of broad‐billed hummingbirds (Cynanthus latirostris). Our model indicated the energy budget was distributed in the following proportions: daytime activity, 59% (range 22%–84%); thermoregulation, 23% (11%–32%); basal metabolism, 7% (3%–16%); and night‐time energy, 17% (6%–37%). Activity costs were higher at the hotter, homogeneous site and during the early‐wet season at both sites. Increased daily energy expenditure was related to decreased nectar availability and not significantly related to temperature or bird mass. With climate change, the indirect energetic costs of shifting resources could have greater impacts on endotherm energy budgets than direct costs such as thermoregulation. Increased foraging and activity costs could decrease the energy available to birds for somatic repair and reproduction, potentially causing differential fitness across seasons and sites

    Large enhancement of radiative strength for soft transisitons in the quasicontinuum

    Full text link
    Radiative strength functions (RSFs) for the 56,57-Fe nuclei below the separation energy are obtained from the 57-Fe(3-He,alpha gamma)56-Fe and 57-Fe(3-He,3-He' gamma)57-Fe reactions, respectively. An enhancement of more than a factor of ten over common theoretical models of the soft (E_gamma ~< 2 MeV) RSF for transitions in the quasicontinuum (several MeV above the yrast line) is observed. Two-step cascade intensities with soft primary transitions from the 56-Fe(n,2gamma)57-Fe reaction confirm the enhancement.Comment: 4 pages including 3 figure

    Doodles on surfaces

    Get PDF
    Doodles were introduced in but were restricted to embedded circles in the 2-sphere. Khovanov, extended the idea to immersed circles in the 2-sphere. In this paper we further extend the range of doodles to any closed oriented surfaces. Uniqueness of minimal representatives is proved, and various example of doodles are given with their minimal representatives. We also introduce the notion of virtual doodles, and show that there is a natural one-to-one correspondence between doodles on surfaces and virtual doodles on the plane

    Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei

    Full text link
    The 197Au(gamma,n) reaction is used as an activation standard for photodisintegration studies on astrophysically relevant nuclei. At the bremsstrahlung facility of the superconducting electron accelerator ELBE (Electron Linear accelerator of high Brilliance and low Emittance) of Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV. The measured activation yield is compared with previous experiments as well as with calculations using Hauser-Feshbach statistical models. It is shown that the experimental data are best described by a two-Lorentzian parametrization with taking the axial deformation of 197Au into account. The experimental 197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method is found to be consistent with previous experimental data using photon scattering or neutron detection methods.Comment: 9 page

    Ethane steam reforming over a platinum/alumina catalyst: effect of sulphur poisoning

    Get PDF
    In this study we have examined the adsorption of hydrogen sulfide and methanethiol over platinum catalysts and examined the effect of these poisons on the steam reforming of ethane. Adsorption of hydrogen sulfide was measured at 293 and 873 K. At 873 K the adsorbed state of hydrogen sulfide in the presence of hydrogen was SH rather than S, even though the Pt:S ratio was unity. The effect of 11.2 ppm hydrogen sulfide or methanethiol on the steam reforming of ethane was studied at 873 K and 20 barg. Both poisons deactivated the catalyst over a number of hours, but methanethiol was found to be more deleterious, reducing the conversion by almost an order of magnitude, possibly due to the co-deposition of sulfur and carbon. Changes in the selectivity revealed that the effect of sulfur was not uniform on the reactions occurring, with the production of methane reduced proportionally more than the other products, due to the surface sensitivity of the hydrogenolysis and methanation reactions. The water-gas shift reaction was affected to a lesser extent. No regeneration was observed when hydrogen sulfide was removed from the feedstream in agreement with adsorption studies. A slight regeneration was observed when methanethiol was removed from the feed, but this was believed to be due to the removal of carbon rather than sulfur. The overall effect of sulfur poisoning was to reduce activity and enhance hydrogen selectivity
    corecore