18 research outputs found

    Persistent Infection and Promiscuous Recombination of Multiple Genotypes of an RNA Virus within a Single Host Generate Extensive Diversity

    Get PDF
    Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses

    Using the iplant collaborative discovery environment

    No full text
    The iPlant Collaborative is an academic consortium whose mission is to develop an informatics and social infrastructure to address the "grand challenges" in plant biology. Its cyberinfrastructure supports the computational needs of the research community and facilitates solving major challenges in plant science. The Discovery Environment provides a powerful and rich graphical interface to the iPlant Collaborative cyberinfrastructure by creating an accessible virtual workbench that enables all levels of expertise, ranging from students to traditional biology researchers and computational experts, to explore, analyze, and share their data. By providing access to iPlant's robust data-management system and high-performance computing resources, the Discovery Environment also creates a unified space in which researchers can access scalable tools. Researchers can use available Applications (Apps) to execute analyses on their data, as well as customize or integrate their own tools to better meet the specific needs of their research. These Apps can also be used in workflows that automate more complicated analyses. This module describes how to use the main features of the Discovery Environment, using bioinformatics workflows for high-throughput sequence data as examples. © 2013 by John Wiley & Sons, Inc
    corecore