107 research outputs found

    Wind turbine wakes; power deficit in clusters and wind farms

    Get PDF

    The influence of humidity fluxes on offshore wind speed profiles

    Get PDF
    Abstract. Wind energy developments offshore focus on larger turbines to keep the relative cost of the foundation per MW of installed capacity low. Hence typical wind tur-bine hub-heights are extending to 100 m and potentially be-yond. However, measurements to these heights are not usu-ally available, requiring extrapolation from lower measure-ments. With humid conditions and low mechanical turbu-lence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability correc-tions are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected wind speed profiles. The effect on wind speed profiles is found to be im-portant in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4 % higher than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes

    Analysis and validation of CFD wind farm models in complex terrain. Effects induced by topography and wind turbines

    Get PDF
    Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms
    • …
    corecore