2,128 research outputs found

    Hyperfine-mediated gate-driven electron spin resonance

    Full text link
    An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.Comment: related papers available at http://marcuslab.harvard.ed

    Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain

    Get PDF
    The space- and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behaviour. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wavevector and energy with great detail, allowing theories to be quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on integrability and density matrix renormalization group simulations. The unprecedented quantitative agreement shows that precise descriptions of strongly correlated states at all distance, time and temperature scales are now possible, and highlights the need to apply these novel techniques to other problems in low-dimensional magnetism

    Probing the BLR in AGNs using time variability of associated absorption line

    Full text link
    It is know that most of the clouds producing associated absorption in the spectra of AGNs and quasars do not completely cover the background source (continuum + broad emission line region, BLR). We note that the covering factor derived for the absorption is the fraction of photons occulted by the absorbing clouds, and is not necessarily the same as the fractional area covered. We show that the variability in absorption lines can be produced by the changes in the covering factor caused by the variation in the continuum and the finite light travel time across the BLR. We discuss how such a variability can be distinguished from the variability caused by other effects and how one can use the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    Adhesive Contact to a Coated Elastic Substrate

    Get PDF
    We show how the quasi-analytic method developed to solve linear elastic contacts to coated substrates (Perriot A. and Barthel E. {\em J. Mat. Res.}, {\bf 2004}, {\em 19}, 600) may be extended to adhesive contacts. Substrate inhomogeneity lifts accidental degeneracies and highlights the general structure of the adhesive contact theory. We explicit the variation of the contact variables due to substrate inhomogeneity. The relation to other approaches based on Finite Element analysis is discussed

    Plastic flow and structural heterogeneities in silicate glasses - A high throughput investigation

    Get PDF
    Please click Additional Files below to see the full abstract

    Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses

    Get PDF
    Low energy femtosecond laser pulses locally increase the refractive index and the hydro-fluoric acid etching rate of fused silica. These phenomena form the basis of a direct-write method to fabricate integrated glass devices that are of particular interest for optofluidics and optomechanical applications. Yet the underlying physical mechanism behind these effects remains elusive, especially the role of the laser polarization. Using Scanning Thermal Microscope and Raman spectrometer we observe in laser affected zones, a localized sharp decrease of the thermal conductivity correlated with an increased presence of low-number SiO2 cycles. In addition, we find that a high correlation exists between the amount of structural changes and the decrease of thermal conductivity. Furthermore, sub-wavelength periodic patterns are detected for high peak power exposures. Finally, our findings indicate that, to date, the localized densification induced by femtosecond laser pulses remains well below the theoretical value achievable in mechanically densified silica
    corecore