2,718 research outputs found

    Elastic contact to a coated half-space - Effective elastic modulus and real penetration

    Get PDF
    A new approach to the contact to coated elastic materials is presented. A relatively simple numerical algorithm based on an exact integral formulation of the elastic contact of an axisymmetric indenter to a coated substrate is detailed. It provides contact force and penetration as a function of the contact radius. Computations were carried out for substrate to layer moduli ratios ranging from 0.01 to 100 and various indenter shapes. Computed equivalent moduli showed good agreement with the Gao model for mismatch ratios ranging from 0.5 to 2. Beyond this range, substantial effects of inhomogeneous strain istribution are evidenced. An empirical function is proposed to fit the equivalent modulus. More importantly, if the indenter is not flat-ended, the simple relation between contact radius and penetration valid for homogeneous substrates breaks down. If neglected, this phenomenon leads to significant errors in the evaluation of the contact radius in depth-sensing indentation on coated substrates with large elastic modulus mismatch

    Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain

    Get PDF
    The space- and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behaviour. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wavevector and energy with great detail, allowing theories to be quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on integrability and density matrix renormalization group simulations. The unprecedented quantitative agreement shows that precise descriptions of strongly correlated states at all distance, time and temperature scales are now possible, and highlights the need to apply these novel techniques to other problems in low-dimensional magnetism

    Adhesive Contact to a Coated Elastic Substrate

    Get PDF
    We show how the quasi-analytic method developed to solve linear elastic contacts to coated substrates (Perriot A. and Barthel E. {\em J. Mat. Res.}, {\bf 2004}, {\em 19}, 600) may be extended to adhesive contacts. Substrate inhomogeneity lifts accidental degeneracies and highlights the general structure of the adhesive contact theory. We explicit the variation of the contact variables due to substrate inhomogeneity. The relation to other approaches based on Finite Element analysis is discussed

    Interplay between phase defects and spin polarization in the specific heat of the spin density wave compound (TMTTF)_2Br in a magnetic field

    Full text link
    Equilibrium heat relaxation experiments provide evidence that the ground state of the commensurate spin density wave (SDW) compound (TMTTF)2_2Br after the application of a sufficient magnetic field is different from the conventional ground state. The experiments are interpreted on the basis of the local model of strong pinning as the deconfinement of soliton-antisoliton pairs triggered by the Zeeman coupling to spin degrees of freedom, resulting in a magnetic field induced density wave glass for the spin carrying phase configuration.Comment: 4 pages, 5 figure

    BeppoSAX observations of low power radio galaxies: possible detection of obscured nuclei

    Get PDF
    We present the first results of BeppoSAX observations of a small sample of low brightness FRI radio galaxies. The flux of all the targets is consistent with a thermal spectrum, as due to the presence of hot intracluster gas or galactic corona. Moreover in three sources a non thermal absorbed spectrum can be present in the MECS spectrum at energies larger than 7 keV, while for a fourth object a high energy flux has been detected in the PDS instrument at energies larger than 15 keV. This component could be related to the inner AGN surrounded by an obscuring torus.Comment: 4 pages, LateX, 3 figures (included). Uses espcrc2.sty (included). To appear in: "The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE", Rome, Italy, 21-24 October, 1997, Eds.: L. Scarsi, H. Bradt, P. Giommi and F. Fior

    Probing the BLR in AGNs using time variability of associated absorption line

    Full text link
    It is know that most of the clouds producing associated absorption in the spectra of AGNs and quasars do not completely cover the background source (continuum + broad emission line region, BLR). We note that the covering factor derived for the absorption is the fraction of photons occulted by the absorbing clouds, and is not necessarily the same as the fractional area covered. We show that the variability in absorption lines can be produced by the changes in the covering factor caused by the variation in the continuum and the finite light travel time across the BLR. We discuss how such a variability can be distinguished from the variability caused by other effects and how one can use the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ

    Asymmetric Silver to Oxide Adhesion in Multilayers Deposited on Glass by Sputtering

    Full text link
    We have developed a wedge-loaded double-cantilever beam adhesion measurement set-up for thin films deposited on glass by sputtering. The test is described in details. Results on the Glass/sublayer/Ag/ZnO multilayer provide evidence that \SnOd or \TiOd perform better than ZnO as a sublayer. Then however, rupture within the multilayer shifts to the upper Ag/ZnO interface. The latter is shown to be tougher than the lower ZnO/Ag interface, an asymmetry due to non-equilibrium interfacial structures

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure
    corecore