550 research outputs found
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
The appearence of a new type of fast nonlinear traveling wave states in
binary fluid convection with increasing Soret effect is elucidated and the
parameter range of their bistability with the common slower ones is evaluated
numerically. The bifurcation behavior and the significantly different
spatiotemporal properties of the different wave states - e.g. frequency, flow
structure, and concentration distribution - are determined and related to each
other and to a convenient measure of their nonlinearity. This allows to derive
a limit for the applicability of small amplitude expansions. Additionally an
universal scaling behavior of frequencies and mixing properties is found.
PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure
Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection
Recent experiments on convection in binary mixtures have shown that the
interaction between localized waves (pulses) can be repulsive as well as {\it
attractive} and depends strongly on the relative {\it orientation} of the
pulses. It is demonstrated that the concentration mode, which is characteristic
of the extended Ginzburg-Landau equations introduced recently, allows a natural
understanding of that result. Within the standard complex Ginzburg-Landau
equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded
Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment
Convection structures in binary fluid mixtures are investigated for positive
Soret coupling in the driving regime where solutal and thermal contributions to
the buoyancy forces compete. Bifurcation properties of stable and unstable
stationary square, roll, and crossroll (CR) structures and the oscillatory
competition between rolls and squares are determined numerically as a function
of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where
the oscillation period grows in integer steps as is found
and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Influence of the Soret effect on convection of binary fluids
Convection in horizontal layers of binary fluids heated from below and in
particular the influence of the Soret effect on the bifurcation properties of
extended stationary and traveling patterns that occur for negative Soret
coupling is investigated theoretically. The fixed points corresponding to these
two convection structures are determined for realistic boundary conditions with
a many mode Galerkin scheme for temperature and concentration and an accurate
one mode truncation of the velocity field. This solution procedure yields the
stable and unstable solutions for all stationary and traveling patterns so that
complete phase diagrams for the different convection types in typical binary
liquid mixtures can easily be computed. Also the transition from weakly to
strongly nonlinear states can be analyzed in detail. An investigation of the
concentration current and of the relevance of its constituents shows the way
for a simplification of the mode representation of temperature and
concentration field as well as for an analytically manageable few mode
description.Comment: 30 pages, 12 figure
Influence of through-flow on linear pattern formation properties in binary mixture convection
We investigate how a horizontal plane Poiseuille shear flow changes linear
convection properties in binary fluid layers heated from below. The full linear
field equations are solved with a shooting method for realistic top and bottom
boundary conditions. Through-flow induced changes of the bifurcation thresholds
(stability boundaries) for different types of convective solutions are deter-
mined in the control parameter space spanned by Rayleigh number, Soret coupling
(positive as well as negative), and through-flow Reynolds number. We elucidate
the through-flow induced lifting of the Hopf symmetry degeneracy of left and
right traveling waves in mixtures with negative Soret coupling. Finally we
determine with a saddle point analysis of the complex dispersion relation of
the field equations over the complex wave number plane the borders between
absolute and convective instabilities for different types of perturbations in
comparison with the appropriate Ginzburg-Landau amplitude equation
approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure
Influence of the Dufour effect on convection in binary gas mixtures
Linear and nonlinear properties of convection in binary fluid layers heated
from below are investigated, in particular for gas parameters. A Galerkin
approximation for realistic boundary conditions that describes stationary and
oscillatory convection in the form of straight parallel rolls is used to
determine the influence of the Dufour effect on the bifurcation behaviour of
convective flow intensity, vertical heat current, and concentration mixing. The
Dufour--induced changes in the bifurcation topology and the existence regimes
of stationary and traveling wave convection are elucidated. To check the
validity of the Galerkin results we compare with finite--difference numerical
simulations of the full hydrodynamical field equations. Furthermore, we report
on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Deposition of fluorescent NIPAM-based nanoparticles on solid surfaces: quantitative analysis and the factors affecting it
Recently, responsive surfaces have attracted attention due to their potential applications. Reported research have studied the deposition of environmentally responsive particles on different surfaces, qualitatively tested their response to environmental conditions and studied their possible applications. In this work, novel fluorescent temperature-sensitive nanoparticles were synthesized using a surfactant free emulsion polymerization technique: poly(N-isopropylacrylamide-co-5% vinyl cinnamate) (p(NIPAM)5%VC). The new particles were characterized using dynamic light scattering and fluorescence spectroscopy. A novel sensitive method for the quantitative analysis of p(NIPAM) 5% VC using fluorescence spectroscopy was developed to determine the concentration of nanoparticle dispersions. This was further used to quantitatively determine the mass of nanoparticles deposited per unit area of glass pre-treated with acid, glass pre-treated with base, quartz, stainless steel, gold and teflon at 25 °C and 60 °C. Factors affecting the adsorption/desorption of the nanoparticles were studied, including the effect of substrate surface charge, surface roughness (using atomic force microscopy, AFM), hydrophilicity/hydrophobicity and the temperature at which the adsorption/desorption experiments were carried out. The results show that the effect of surface charge is the most significant, followed by that of surface roughness and temperature. Meanwhile, the influence of the hydrophobicity/hydrophilicity of the surface on the adsorption/desorption of nanoparticles appears to be far less significant than the previously mentioned factors
It is hard to see a needle in a haystack: Modeling contrast masking effect in a numerical observer
Within the framework of a virtual clinical trial for breast imaging, we aim
to develop numerical observers that follow the same detection performance
trends as those of a typical human observer. In our prior work, we showed that
by including spatiotemporal contrast sensitivity function (stCSF) of human
visual system (HVS) in a multi-slice channelized Hotelling observer (msCHO), we
can correctly predict trends of a typical human observer performance with the
viewing parameters of browsing speed, viewing distance and contrast. In this
work we further improve our numerical observer by modeling contrast masking.
After stCSF, contrast masking is the second most prominent property of HVS and
it refers to the fact that the presence of one signal affects the visibility
threshold for another signal. Our results indicate that the improved numerical
observer better predicts changes in detection performance with background
complexity
- …
