102 research outputs found
Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake
Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008,
at least 300 million metric tons of water accumulated with additional seasonal
water level changes in the Minjiang River Valley at the eastern margin of the
Longmen Shan. This article shows that static surface loading in the Zipingpu
water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust
fault system at <17km depth. Triggering stresses exceeded levels of daily lunar
and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress
perturbations, in turn, likely advanced the clock of the mainshock and directed
the initial rupture propagation upward towards the reservoir on the
"Coulomb-like" Beichuan fault with rate-and-state dependent frictional
behavior. Static triggering perturbations produced up to 60 years (0.6%) of
equivalent tectonic loading, and show strong correlations to the coseismic
slip. Moreover, correlations between clock advancement and coseismic slip,
observed during the mainshock beneath the reservoir, are strongest for a longer
seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the
micro-seismicity (M>0.5) correlates well with the static stress perturbations,
indicating destabilization.Comment: 22 pages, 4 figures, 3 table
Moving from information and collaboration to action: report from the 3rd International Dog Health Workshop, Paris in April 2017
Abstract Background Breed-related health problems in dogs have received increased focus over the last decade. Responsibility for causing and/or solving these problems has been variously directed towards dog breeders and kennel clubs, the veterinary profession, welfare scientists, owners, regulators, insurance companies and the media. In reality, all these stakeholders are likely to share some responsibility and optimal progress on resolving these challenges requires all key stakeholders to work together. The International Partnership for Dogs (IPFD), together with an alternating host organization, holds biennial meetings called the International Dog Health Workshops (IDHW). The Société Centrale Canine (French Kennel Club) hosted the 3rd IDHW, in Paris, in April, 2017. These meetings bring together a wide range of stakeholders in dog health, science and welfare to improve international sharing of information and resources, to provide a forum for ongoing collaboration, and to identify specific needs and actions to improve health, well-being and welfare in dogs. Results The workshop included 140 participants from 23 countries and was structured around six important issues facing those who work to improve dog health. These included individualized breed-specific strategies for health and breeding, extreme conformations, education and communication in relation to antimicrobial resistance, behavior and welfare, genetic testing and population-based evidence. A number of exciting actions were agreed during the meeting. These included setting up working groups to create tools to help breed clubs accelerate the implementation of breed-health strategies, review aspects of extreme conformation and share useful information on behavior. The meeting also heralded the development of an online resource of relevant information describing quality measures for DNA testing. A demand for more and better data and evidence was a recurring message stressed across all themes. Conclusions The meeting confirmed the benefits from inclusion of a diverse range of stakeholders who all play relevant and collaborative parts to improve future canine health. Firm actions were set for progress towards improving breed-related welfare. The next international workshop will be in the UK in 2019 and will be organized by the UK Kennel Club
The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation
The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel
A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry
<p>Abstract</p> <p>Background</p> <p>High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate <it>de novo </it>sequencing for identification of post-translational modifications and amino acid polymorphisms.</p> <p>Results</p> <p>In this study, a new <it>de novo </it>sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of <it>Rhodopseudomonas palustris</it>. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of <it>de novo </it>sequenced spectra and the sequencing accuracy.</p> <p>Conclusions</p> <p>Here, we improved <it>de novo </it>sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at <url>http://compbio.ornl.gov/Vonode</url>.</p
Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1
The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating
Human ether-à-go-go-related gene (hERG) K+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4–S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4–S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4–S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4–S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4–S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4–S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6
Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial
Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes
Raible M, Evstigneev M, Reimann P, Bartels FW, Ros R. Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes. Journal of Biotechnology. 2004;112(1-2):13-23.The forced rupture of single chemical bonds in biomolecular compounds (e.g. ligand-receptor systems) as observed in dynamic force spectroscopy experiments is addressed. Under the assumption that the probability of bond rupture depends only on the instantaneously acting force, a data collapse onto a single master curve is predicted. For rupture data obtained experimentally by dynamic AFM force spectroscopy of a ligand-receptor bond between a DNA and a regulatory protein we do not find such a collapse. We conclude that the above mentioned, generally accepted assumption is not satisfied and we discuss possible explanations. (C) 2004 Elsevier B.V. All rights reserved
- …