66 research outputs found
The Practitioner's Dilemma: How to Assess the Credibility of Downscaled Climate Projections
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101803/1/eost2013EO460005.pd
Recommended from our members
Attribution of 2012 extreme climate events: does air-sea interaction matter?
In 2012, extreme anomalous climate conditions occurred around the globe. Large areas of North America experienced an anomalously hot summer, with large precipitation deficits inducing severe drought. Over Europe, the summer of 2012 was marked by strong precipitation anomalies with the UK experiencing its wettest summer since 1912 while Spain suffered severe drought. What caused these extreme climate conditions in various regions in 2012? This study compares attribution conclusions for 2012 climate anomalies relative to a baseline period (1964–1981) based on two sets of parallel experiments with different model configurations (with coupling to an ocean mixed layer model or with prescribed sea surface temperatures) to assess whether attribution conclusions concerning the climate anomalies in 2012 are sensitive to the representation of air-sea interaction. Modelling results indicate that attribution conclusions for large scale surface air temperature (SAT) changes in both boreal winter and summer are generally robust and not very sensitive to air-sea interaction. This is especially true over southern Europe, Eurasia, North America, South America, and North Africa. Some other responses also appear to be insensitive to air-sea interaction: for example, forced increases in precipitation over northern Europe and Sahel, and reduced precipitation over North America and the Amazon in boreal summer. However, the attribution of circulation and precipitation changes for some other regions exhibits a sensitivity to air-sea interaction. Results from the experiments including coupling to an ocean mixed layer model show a positive NAO-like circulation response in the Atlantic sector in boreal winter and weak changes in the East Asian summer monsoon and precipitation over East Asia. With prescribed sea surface temperatures, some different responses arise over these two regions. Comparison with observed changes indicates that the coupled simulations generally agree better with observations, demonstrating that attribution methods based on atmospheric general circulation models have limitations and may lead to erroneous attribution conclusions for regional anomalies in circulation, precipitation and surface air temperature
Recommended from our members
Challenges and opportunities for improved understanding of regional climate dynamics
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical–extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models
Internet of Things for Environmental Sustainability and Climate Change
Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that is necessary to support climate change impacts assessments in each of the related areas (e.g., environmental quality and monitoring, sustainable energy, agricultural systems, cultural preservation, and sustainable mining). In the IoT in Environmental Sustainability and Climate Change chapter, a framework for informed creation, interpretation and use of climate change projections and for continued innovations in climate and environmental science driven by key societal and economic stakeholders is presented. In addition, the IoT cyberinfrastructure to support the development of continued innovations in climate and environmental science is discussed
ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing
This is the final version of the article. Available from AGU via the DOI in this record.El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.S. W. Y. is supported by the KoreaMeteorological Administration Researchand Development Program under grant KMIPA2015-2112. Wenju Cai is supported by Earth System and Climate Change Hub of the Australia National Environmental Science Programme, and Centre for Southern Hemisphere Oceans Research, an international collaboration between CSIRO and Qingdao National Laboratory for Marine Sciences and Technology. B. Dewitte acknowledges supports from FONDECYT(1151185) and from LEFE-GMMC. Dietmar Dommenget is supported by ARC Centre of Excellence for Climate System Science (CE110001028)
D.: Global Atmospheric Sensitivity to Tropical SST Anomalies throughout the IndoPacific Basin
ABSTRACT The sensitivity of the global atmospheric response to sea surface temperature (SST) anomalies throughout the tropical Indian and Pacific Ocean basins is investigated using the NCEP MRF9 general circulation model (GCM). Model responses in January are first determined for a uniform array of 42 localized SST anomaly patches over the domain. Results from the individual forcing experiments are then linearly combined using a statistically based smoothing procedure to produce sensitivity maps for many target quantities of interest, including the geopotential height response over the Pacific-North American (PNA) region and regional precipitation responses over North America, South America, Africa, Australia, and Indonesia. Perhaps the most striking result from this analysis is that many important targets for seasonal forecasting, including the PNA response, are most sensitive to SST anomalies in the Niño-4 region (5ЊN-5ЊS, 150ЊW-160ЊE) of the central tropical Pacific, with lesser and sometimes opposite sensitivities to SST anomalies in the Niño-3 region (5ЊN-5ЊS, 90Њ-150ЊW) of the eastern tropical Pacific. However, certain important targets, such as Indonesian rainfall, are most sensitive to SST anomalies outside both the Niño-4 and -3 regions. These results are also relevant in assessing atmospheric sensitivity to changes in tropical SSTs on decadal to centennial scales associated with natural as well as anthropogenic forcing. In this context it is interesting to note the surprising result that warm SST anomalies in one-third of the Indo-Pacific domain lead to a decrease of global mean precipitation
- …