2,943 research outputs found

    NASA’s New Wildland Fire Earth Observation Science & Applications Programmatic Developments

    Get PDF
    In 2021, the U.S. National Aeronautics & Space Administration (NASA) initiated new programmatic elements within the Science Mission Directorate (SMD) and the Aeronautics Research Mission Directorate (ARMD) focused on supporting wildland fire science and applications improvements, employing the vast array of NASA scientific knowledge, airborne and space-borne Earth Observations (EO) capabilities, technology development (sensor systems, etc.), and large framework modeling efforts. Within the Science Mission Directorate, the NASA Earth Science Division (ESD) will focus on improving our understanding of wildland fire through EO tools and applying rigorous-tested modeling and results of that research into operational use. The ESD Wildfire strategy is to invest in new technology and to better integrate NASA’s satellite, airborne, and ground-based observations with wildfire models to provide the wildfire stakeholders with the information they need to make informed decisions about the pre-, active-, and post-fire conditions. The Applied Science Program has restarted the Wildland Fire Applications Program with a focus on engaging wildland fire management and the fire science community in transitioning EO science efforts into routine use by land management entities at the local, state, national and international level. The NASA Aeronautics Research Mission Directorate will focus on arenas where their aeronautics science and engineering outcomes can benefit the fire management community as well, specifically in the innovative development of Uncrewed Aircraft systems, congested mixed-use platform airspace management issues, new platform configurations supporting wildland fire missions, and other aeronautics-related science/engineering capabilities which may benefit the fire management community. In total, these developments represent a major thrust forward, supporting the goals of utilizing NASA science to benefit humankind. This presentation will highlight the various wildland fire science focus areas identified through collaborations with the wildland fire science and management community and highlight the plans of this new NASA focus area

    Occultation Mapping of the Central Engine in the Active Galaxy MCG -6-30-15

    Get PDF
    The colossal power output of active galactic nuclei (AGN) is believed to be fueled by the accretion of matter onto a supermassive black hole. This central accreting region of AGN has hitherto been spatially unresolved and its structure therefore unknown. Here we propose that a previously reported `deep minimum' in the X-ray intensity of the AGN MCG-6-30-15, was due to a unique X-ray occultation event and that it probes structure of the central engine on scales < 1e14 cm, or 1.4e-7 arcseconds. The data are consistent with a bright central source surrounded by a less intense ring, which we identify with the inner edge of an accretion disk. These may be the first direct measurements of the spatial structure and geometry of the accreting black-hole system in an active galaxy.If the ring of X-ray emission is identified with the inner edge of an accretion disk, upper limits on the BH mass can be derived. Our occultation interpretation is controversial in the sense that X-ray variability in AGNs is normally attributed to intrinsic physical changes in the X-ray emission region, such as disk or coronal instabilities.Comment: 15 pages, 2 Figures. Latex with separate postscript figure files. Accepted for publication in ApJ Letter

    Cognitive Information Processing

    Get PDF
    Contains reports on seven research projects.National Institutes of Health (Grant 5 POI GM14940-03)National Institutes of Health (Grant 5 P01 GM15006-02)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E

    Mid-infrared spectra of PAH emission in Herbig AeBe stars

    Full text link
    We present spectra of four Herbig AeBe stars obtained with the Infrared Spectrograph (IRS). on the Spitzer Space Telescope. All four of the sources show strong emission from polycyclic aromatic hydrocarbons (PAHs), with the 6.2 um emission feature shifted to 6.3 um and the strongest C-C skeletal-mode feature occuring at 7.9 um instead of at 7.7 um as is often seen. Remarkably, none of the four stars have silicate emission. The strength of the 7.9 um feature varies with respect to the 11.3 um feature among the sources, indicating that we have observed PAHs with a range of ionization fractions. The ionization fraction is higher for systems with hotter and brighter central stars. Two sources, HD 34282 and HD 169142, show emission features from aliphatic hydrocarbons at 6.85 and 7.25 um. The spectrum of HD 141569 shows a previously undetected emission feature at 12.4 um which may be related to the 12.7 um PAH feature. The spectrum of HD 135344, the coolest star in our sample, shows an unusual profile in the 7-9 um region, with the peak emission to the red of 8.0 um and no 8.6 um PAH feature.Comment: Accepted by ApJ 23 June, 2005, 8 pages (emulateapj), 5 figures (3 in color

    The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (II): Measurement of Foreground Zodiacal Light

    Get PDF
    We present a measurement of the absolute surface brightness of the zodiacal light (3900-5100A) toward a fixed extragalactic target at high ecliptic latitude based on moderate resolution (~1.3A per pixel) spectrophotometry obtained with the du Pont 2.5m telescope at Las Campanas Observatory in Chile. This measurement and contemporaneous Hubble Space Telescope data from WFPC2 and FOS comprise a coordinated program to measure the mean flux of the diffuse extragalactic background light (EBL). The zodiacal light at optical wavelengths results from scattering by interplanetary dust, so that the zodiacal light flux toward any extragalactic target varies seasonally with the position of the Earth. This measurement of zodiacal light is therefore relevant to the specific observations (date and target field) under discussion. To obtain this result, we have developed a technique that uses the strength of the zodiacal Fraunhofer lines to identify the absolute flux of the zodiacal light in the multiple-component night sky spectrum. Statistical uncertainties in the result are 0.6% (1 sigma). However, the dominant source of uncertainty is systematic errors, which we estimate to be 1.1% (1 sigma). We discuss the contributions included in this estimate explicitly. The systematic errors in this result contribute 25% in quadrature to the final error in our coordinated EBL measurement, which is presented in the first paper of this series.Comment: Accepted for publication in ApJ, 22 pages using emulateapj.sty, version with higher resolution figures available at http://www.astro.lsa.umich.edu/~rab/publications.html or at http://nedwww.ipac.caltech.edu/level5/Sep01/Bernstein2/frames.htm

    Wide-Field InfraRed Survey Telescope (WFIRST) Final Report

    Full text link
    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.Comment: 102 pages, 57 figures, 17 table

    Coping with the Lionfish Invasion: can targeted removals yield beneficial effects?

    Get PDF
    Invasive species generate significant environmental and economic costs, with maintenance management constituting a major expenditure. Such costs are generated by invasive Indo-Pacific lionfish (Pterois spp.) that further threaten already stressed coral reefs in the western Atlantic Ocean and Caribbean Sea. This brief review documents rapid range expansion and potential impacts of lionfish. In addition, preliminary experimental data from targeted removals contribute to debates about maintenance management. Removals at sites off Little Cayman Island shifted the size frequency distribution of remaining lionfish toward smaller individuals whose stomachs contained less prey and fewer fish. Fewer lionfish and decreased predation on threatened grouper, herbivores and other economically and ecologically important fishes represent key steps toward protecting reefs. However, complete evaluation of success requires long-term data detailing immigration and recruitment by lionfish, compensatory growth and reproduction of lionfish, reduced direct effects on prey assemblages, and reduced indirect effects mediated by competition for food. Preventing introductions is the best way to avoid impacts from invasive species and early detection linked to rapid response ranks second. Nevertheless, results from this case study suggest that targeted removals represent a viable option for shifting direct impacts of invasive lionfish away from highly vulnerable components of ecosystems

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
    • 

    corecore