3,136 research outputs found

    Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic Universes

    Full text link
    We show that the inclusion of simple anisotropic pressures stops the isotropic Friedmann universe being a stable attractor as an initial or final singularity is approached when pressures can exceed the energy density. This shows that the situation with isotropic pressures, studied earlier in the context of cyclic and ekpyrotic cosmologies, is not generic, and Kasner-like behaviour occurs when simple pressure anisotropies are present. We find all the asymptotic behaviours and determine the dynamics when the anisotropic principal pressures are proportional to the density. We expect distortions and anisotropies to be significantly amplified through a simple cosmological bounce in cyclic or ekpyrotic cosmologies when ultra-stiff pressures are present.Comment: 18 pages, 2 figure

    Singularity-free cosmological solutions in quadratic gravity

    Full text link
    We study a general field theory of a scalar field coupled to gravity through a quadratic Gauss-Bonnet term Ο(ϕ)RGB2\xi(\phi) R^2_{GB}. The coupling function has the form Ο(ϕ)=ϕn\xi(\phi)=\phi^n, where nn is a positive integer. In the absence of the Gauss-Bonnet term, the cosmological solutions for an empty universe and a universe dominated by the energy-momentum tensor of a scalar field are always characterized by the occurrence of a true cosmological singularity. By employing analytical and numerical methods, we show that, in the presence of the quadratic Gauss-Bonnet term, for the dual case of even nn, the set of solutions of the classical equations of motion in a curved FRW background includes singularity-free cosmological solutions. The singular solutions are shown to be confined in a part of the phase space of the theory allowing the non-singular solutions to fill the rest of the space. We conjecture that the same theory with a general coupling function that satisfies certain criteria may lead to non-singular cosmological solutions.Comment: Latex, 25 pages, 6 figures, some explanatory sentences and Comments added, version to appear in Physical Review

    Structure and stability of the Lukash plane-wave spacetime

    Full text link
    We study the vacuum, plane-wave Bianchi VIIhVII{}_{h} spacetimes described by the Lukash metric. Combining covariant with orthonormal frame techniques, we describe these models in terms of their irreducible kinematical and geometrical quantities. This covariant description is used to study analytically the response of the Lukash spacetime to linear perturbations. We find that the stability of the vacuum solution depends crucially on the background shear anisotropy. The stronger the deviation from the Hubble expansion, the more likely the overall linear instability of the model. Our analysis addresses rotational, shear and Weyl curvature perturbations and identifies conditions sufficient for the linear growth of these distortions.Comment: Revised version, references added. To appear in Class. Quantum Gra

    Proximity coherence for chip-multiprocessors

    Get PDF
    Many-core architectures provide an efficient way of harnessing the growing numbers of transistors available in modern fabrication processes; however, the parallel programs run on these platforms are increasingly limited by the energy and latency costs of communication. Existing designs provide a functional communication layer but do not necessarily implement the most efficient solution for chip-multiprocessors, placing limits on the performance of these complex systems. In an era of increasingly power limited silicon design, efficiency is now a primary concern that motivates designers to look again at the challenge of cache coherence. The first step in the design process is to analyse the communication behaviour of parallel benchmark suites such as Parsec and SPLASH-2. This thesis presents work detailing the sharing patterns observed when running the full benchmarks on a simulated 32-core x86 machine. The results reveal considerable locality of shared data accesses between threads with consecutive operating system assigned thread IDs. This pattern, although of little consequence in a multi-node system, corresponds to strong physical locality of shared data between adjacent cores on a chip-multiprocessor platform. Traditional cache coherence protocols, although often used in chip-multiprocessor designs, have been developed in the context of older multi-node systems. By redesigning coherence protocols to exploit new patterns such as the physical locality of shared data, improving the efficiency of communication, specifically in chip-multiprocessors, is possible. This thesis explores such a design – Proximity Coherence – a novel scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure.EPSRC DTA research scholarshi

    Towards a High Energy Theory for the Higgs Phase of Gravity

    Get PDF
    Spontaneous Lorentz violation due to a time-dependent expectation value for a massless scalar has been suggested as a method for dynamically generating dark energy. A natural candidate for the scalar is a Goldstone boson arising from the spontaneous breaking of a U(1) symmetry. We investigate the low-energy effective action for such a Goldstone boson in a general class of models involving only scalars, proving that if the scalars have standard kinetic terms then at the {\em classical} level the effective action does not have the required features for spontaneous Lorentz violation to occur asymptotically (t→∞)(t \to \infty) in an expanding FRW universe. Then we study the large NN limit of a renormalizable field theory with a complex scalar coupled to massive fermions. In this model an effective action for the Goldstone boson with the properties required for spontaneous Lorentz violation can be generated. Although the model has shortcomings, we feel it represents progress towards finding a high energy completion for the Higgs phase of gravity.Comment: 20 pages, 5 figures;fixed typos and added reference

    Solving the Flatness and Quasi-flatness Problems in Brans-Dicke Cosmologies with a Varying Light Speed

    Get PDF
    We define the flatness and quasi-flatness problems in cosmological models. We seek solutions to both problems in homogeneous and isotropic Brans-Dicke cosmologies with varying speed of light. We formulate this theory and find perturbative, non-perturbative, and asymptotic solutions using both numerical and analytical methods. For a particular range of variations of the speed of light the flatness problem can be solved. Under other conditions there exists a late-time attractor with a constant value of \Omega that is smaller than, but of order, unity. Thus these theories may solve the quasi-flatness problem, a considerably more challenging problem than the flatness problem. We also discuss the related \Lambda and quasi-\Lambda problem in these theories. We conclude with an appraisal of the difficulties these theories may face.Comment: 21 pages, 6 figure

    An anti-Schwarzshild solution: wormholes and scalar-tensor solutions

    Full text link
    We investigate a static solution with an hyperbolic nature, characterised by a pseudo-spherical foliation of space. This space-time metric can be perceived as an anti-Schwarzschild solution, and exhibits repulsive features. It belongs to the class of static vacuum solutions termed "a degenerate static solution of class A". In the present work we review its fundamental features, discuss the existence of generalised wormholes, and derive its extension to scalar-tensor gravity theories in general.Comment: 3 pages, contribution to the proceedings of the Spanish Relativity Meeting-ERE200

    Inhomogenized sudden future singularities

    Full text link
    We find that sudden future singularities may also appear in spatially inhomogeneous Stephani models of the universe. They are temporal pressure singularities and may appear independently of the spatial finite density singularities already known to exist in these models. It is shown that the main advantage of the homogeneous sudden future singularities which is the fulfillment of the strong and weak energy conditions may not be the case for inhomogeneous models.Comment: REVTEX 4, 5 pages, no figures, a discussion of the most general case include

    Cosmology in scalar tensor theory and asymptotically de-Sitter Universe

    Get PDF
    We have investigated the cosmological scenarios with a four dimensional effective action which is connected with multidimensional, supergravity and string theories. The solution for the scale factor is such that initially universe undergoes a decelerated expansion but in late times it enters into the accelerated expansion phase. Infact, it asymptotically becomes a de-Sitter universe. The dilaton field in our model is a decreasing function of time and it becomes a constant in late time resulting the exit from the scalar tensor theory to the standard Einstein's gravity. Also the dilaton field results the existence of a positive cosmological constant in late times.Comment: 7 pages, Revtex Style, 6 Postscript figure

    The Isotropy of Compact Universes

    Get PDF
    We discuss the problem of the stability of the isotropy of the universe in the space of ever-expanding spatially homogeneous universes with a compact spatial topology. The anisotropic modes which prevent isotropy being asymptotically stable in Bianchi-type VIIhVII_h universes with non-compact topologies are excluded by topological compactness. Bianchi type VV and type VIIhVII_h universes with compact topologies must be exactly isotropic. In the flat case we calculate the dynamical degrees of freedom of Bianchi-type II and VII0VII_0 universes with compact 3-spaces and show that type VII0VII_0 solutions are more general than type II solutions for systems with perfect fluid, although the type II models are more general than type VII0VII_0 in the vacuum case. For particular topologies the 4-velocity of any perfect fluid is required to be non-tilted. Various consequences for the problems of the isotropy, homogeneity, and flatness of the universe are discussed.Comment: 22 pages in LaTeX2e with the amsmath packag
    • 

    corecore