464 research outputs found

    Active Vorticity Control in a Shear Flow Using a Flapping Foil

    Get PDF
    It is shown experimentally that free shear flows can be substantially altered through direct control of the large coherent vortices present in the flow

    Quantitative image of fluorescence of ceramic and resin-cement veneers

    Get PDF
    The main of the study was quantify the effect of two ceramics with two underlying resin cements on apparent fluorescence levels. Buccal surfaces of two bovine incisors were ground flat producing one enamel and one dentin substrate. The veneers were fabricated (0.5 and 1.0 mm thickness) using two ceramics (IPSe. max Press and IPSe. max Zirpress, Ivoclar Vivadent). Veneers were cemented using either light-cured (Variolink II, Ivoclar Vivadent) or self-adhesive dual (Rely X U200, 3M ESPE) cement. The layered Control group materials had no cement application. Semi-quantitative fluorescence image analysis (Matlabs software, Matworks) involved processing the images as captured under each daylight (DL, Gretagmacbeth) and ultraviolet illuminants (UVA, Sylvania) within a neutral-gray lightbox (Macbeth Spectral Light). Statistical analysis of the quantitative fluorescence values was performed using two-way ANOVA and Tukey's test (p < 0.05). The e. max Zirpress on the dentin substrate produced greater fluorescence (p < 0.05) when subjected to UV illumination and more fluorescence (p < 0.05) than e. max Press in both cement groups. Light-cured cement produced higher (p < 0.05) fluorescence than the dual-cement with e. max Press on enamel under UV illumination. The fluorescence for e. max Press on the dentin substrate was greater (p < 0.05) than for e. max Zirpress using dual self-adhesive cement subjected to daylight illumination. Thus, it is possible to conclude that the combination of ceramic and cement produce definite, significant effects on the apparent fluorescence, vital quality for restorative dentistry3

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture

    Large-space shell-model calculations for light nuclei

    Full text link
    An effective two-body interaction is constructed from a new Reid-like NNNN potential for a large no-core space consisting of six major shells and is used to generate the shell-model properties for light nuclei from AA=2 to 6. (For practical reasons, the model space is partially truncated for AA=6.) Binding energies and other physical observables are calculated and compare favorably with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure

    GA Pilot Perceptions of Speech Systems to Transcribe and Submit PIREPs

    Get PDF
    Flying into hazardous weather can be a cause of aviation incidents and accidents. Accidents involving general aviation (GA) pilots who are not instrument rated who fly into instrument meteorological conditions (IMC) are often fatal. Pilot weather reports (PIREPs) can increase the accuracy and timeliness of current and forecasted weather conditions. They are an essential tool used by pilots to avoid flying into hazardous weather as well as meteorologists to develop and update aviation forecasts. Thus, a large number of accurate PIREPs with the best source of current weather coming from pilots and air traffic controllers are needed. Pilots are often unable to make PIREPs because of workload in the cockpit or because it is cumbersome to leave the air traffic control (ATC) frequency to contact flight the flight service station (FSS). Currently, air traffic controllers must solicit and disseminate PIREPs. However, air traffic controllers’ primary obligation is to provide traffic separation and traffic alerts. During poor weather, when PIREPs are needed the most, controllers are often too busy to solicit and disseminate PIREPs (NTSB, 2017a). This study administered a descriptive survey to inquire about how likely pilots would be to use a speech recognition system (SRS) to transcribe and submit PIREPs automatically while flying in three distinct flight regimes: instrument flight rules (IFR), visual flight rules (VFR) with flight following, and VFR without flight following. The survey employed cross-section design and included Likert scale questions. For each flight regime, additional information was obtained through an open-ended follow-up question. The Likert scale responses indicated that pilots were neutral about using a SRS to transcribe and submit PIREPs in each flight regime.Spradley’s (1979) domain analysis was used to identify common themes and patterns from the open-ended responses. Major findings from flying IFR were that pilots found it easier to speak directly to air traffic control, or pilots were too busy to submit PIREPs while flying IFR. Major findings from flying VFR with flight following were that pilots thought it was easier to report PIREPs directly to air traffic control or to a flight service station, and it was more accurate to report PIREPs directly to an aviation professional. However, they were willing to try a SRS. Major findings from flying VFR without flight following were that pilots wanted the opportunity to review a PIREP submission for accuracy and were willing to try the system. Significant differences were determined by making a comparison between the three groups

    Allowed Gamow-Teller Excitations from the Ground State of 14N

    Get PDF
    Motivated by the proposed experiment 14N(d,2He)14C^{14}N(d,{^2He})^{14}C, we study the final states which can be reached via the allowed Gamow-Teller mechanism. Much emphasis has been given in the past to the fact that the transition matrix element from the JĎ€=1+T=0J^{\pi}=1^+ T=0 ground state of 14N^{14}N to the JĎ€=0+T=1J^{\pi}=0^+ T=1 ground state of 14C^{14}C is very close to zero, despite the fact that all the quantum numbers are right for an allowed transition. We discuss this problem, but, in particular, focus on the excitations to final states with angular momenta 1+1^+ and 2+2^+. We note that the summed strength to the JĎ€=2+T=1J^{\pi}=2^+ T=1 states, calculated with a wide variety of interactions, is significantly larger than that to the JĎ€=1+T=1J^{\pi}=1^+ T=1 final states.Comment: Submitted to Phys. Rev.

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    Dynamical complexity in the C.elegans neural network

    Get PDF
    We model the neuronal circuit of the C.elegans soil worm in terms of a Hindmarsh-Rose system of ordinary differential equa- tions, dividing its circuit into six communities which are determined via the Walktrap and Louvain methods. Using the numerical solution of these equations, we analyze important measures of dynamical com- plexity, namely synchronicity, the largest Lyapunov exponent, and the ?AR auto-regressive integrated information theory measure. We show that ?AR provides a useful measure of the information contained in the C.elegans brain dynamic network. Our analysis reveals that the C.elegans brain dynamic network generates more information than the sum of its constituent parts, and that attains higher levels of integrated information for couplings for which either all its communities are highly synchronized, or there is a mixed state of highly synchronized and de- synchronized communities

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure
    • …
    corecore