977 research outputs found
Reconstructing El Niño Southern Oscillation using data from ships’ logbooks, 1815–1854. Part II: Comparisons with existing ENSO reconstructions and implications for reconstructing ENSO diversity
© 2017 The Author(s) A systematic comparison of El Niño Southern Oscillation reconstructions during the early to mid-nineteenth century is presented using a range of proxy and documentary sources. Reconstructions of the boreal winter Southern Oscillation Index (SOI) using data from ships’ logbooks presented in a companion paper are evaluated and compared to previous ENSO reconstructions. Comparisons between ENSO reconstructions and the instrumental SOI during a period of overlap (1876–1977) are made. These same proxy and documentary reconstructions are then compared to the logbook-based reconstructions, over 1815–1854. The logbook-based reconstructions compare best with a recent multi-proxy reconstruction that used signals taken from different teleconnection regions, and they have an improved agreement with multi-proxy records compared to a previous attempt to reconstruct the SOI from ships’ logbook data. The logbook-based and the multi-proxy reconstructions are found to capture El Niño events better than La Niña events, and East Pacific El Niño events better than Central Pacific El Niño events, thus suggesting a degree of bias in the historical reconstructions. These findings have important implications for future ENSO reconstructions, with a need for an increased understanding of the effects of different ENSO flavours for future reconstructions
A new apparatus for the study of electron impact fragmentation of molecular clusters
This paper reports on the development of a new experiment for the study of
electron-impact induced dissociation and fragmentation of molecular clusters and biomolecules
and other species solvated in water clusters. The purpose is to look at clusters that are of
interest to biophysics, atmospheric physics, and other fields. The experiment consists of a
differentially pumped vacuum system, with an expansion chamber to generate a pulsed
supersonic beam of clusters, and a collision chamber where the cluster beam intersects with an
electron beam. Water clusters can be seeded with biomolecules emerging from a resistively
heated oven. Investigation will be possible into both ion yields and long-lived neutral
metastable yields produced by electron-impact fragmentation of relevant clusters and
biomolecules
The Grover algorithm with large nuclear spins in semiconductors
We show a possible way to implement the Grover algorithm in large nuclear
spins 1/2<I<9/2 in semiconductors. The Grover sequence is performed by means of
multiphoton transitions that distribute the spin amplitude between the nuclear
spin states. They are distinguishable due to the quadrupolar splitting, which
makes the nuclear spin levels non-equidistant. We introduce a generalized
rotating frame for an effective Hamiltonian that governs the non-perturbative
time evolution of the nuclear spin states for arbitrary spin lengths I. The
larger the quadrupolar splitting, the better the agreement between our
approximative method using the generalized rotating frame and exact numerical
calculations.Comment: 11 pages, 18 EPS figures, REVTe
The Case for Quantum Key Distribution
Quantum key distribution (QKD) promises secure key agreement by using quantum
mechanical systems. We argue that QKD will be an important part of future
cryptographic infrastructures. It can provide long-term confidentiality for
encrypted information without reliance on computational assumptions. Although
QKD still requires authentication to prevent man-in-the-middle attacks, it can
make use of either information-theoretically secure symmetric key
authentication or computationally secure public key authentication: even when
using public key authentication, we argue that QKD still offers stronger
security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009
Workshop on Quantum and Classical Information Security; version 2 minor
content revision
Correlation between muonic levels and nuclear structure in muonic atoms
A method that deals with the nucleons and the muon unitedly is employed to
investigate the muonic lead, with which the correlation between the muon and
nucleus can be studied distinctly. A "kink" appears in the muonic isotope shift
at a neutron magic number where the nuclear shell structure plays a key role.
This behavior may have very important implications for the experimentally
probing the shell structure of the nuclei far away from the -stable
line. We investigate the variations of the nuclear structure due to the
interaction with the muon in the muonic atom and find that the nuclear
structure remains basically unaltered. Therefore, the muon is a clean and
reliable probe for studying the nuclear structure. In addition, a correction
that the muon-induced slight change in the proton density distribution in turn
shifts the muonic levels is investigated. This correction to muonic level is as
important as the Lamb shift and high order vacuum polarization correction, but
is larger than anomalous magnetic moment and electron shielding correction.Comment: 2 figure
Correlations and the Cross Section of Exclusive () Reactions for O
The reduced cross section for exclusive () reactions has been studied
in DWIA for the example of the nucleus O using a spectral function
containing effects of correlations. The spectral function is evaluated directly
for the finite nucleus starting from a realistic nucleon-nucleon interaction
within the framework of the Green's function approach. The emphasis is focused
on the correlations induced by excitation modes at low energies described
within a model-space of shell-model configurations including states up to the
shell. Cross sections for the -wave quasi-hole transitions at low
missing energies are presented and compared with the most recent experimental
data. In the case of the so-called perpendicular kinematics the reduced cross
section derived in DWIA shows an enhancement at high missing momenta as
compared to the PWIA result. Furthermore the cross sections for the - and
-wave quasi-hole transitions are presented and compared to available data at
low missing momenta. Also in these cases, which cannot be described in a model
without correlations, a good agreement with the experiment is obtained.Comment: 12 pages, LaTeX, 4 figures include
Nucleus-mediated spin-flip transitions in GaAs quantum dots
Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the
possibilities to manipulate spin states in the dots. We present here
estimations of inelastic spin-flip rates mediated by hyperfine interaction with
nuclei. Under general assumptions the nucleus mediated rate is proportional to
the phonon relaxation rate for the corresponding non-spin-flip transitions. The
rate can be accelerated in the vicinity of a singlet-triplet excited states
crossing. The small proportionality coefficient depends inversely on the number
of nuclei in the quantum dot. We compare our results with known mechanisms of
spin-flip in quantum dot.Comment: RevTex 4 pages, 1 figure, submitted to Phys. Rev.
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software
Solar tomography has progressed rapidly in recent years thanks to the
development of robust algorithms and the availability of more powerful
computers. It can today provide crucial insights in solving issues related to
the line-of-sight integration present in the data of solar imagers and
coronagraphs. However, there remain challenges such as the increase of the
available volume of data, the handling of the temporal evolution of the
observed structures, and the heterogeneity of the data in multi-spacecraft
studies.
We present a generic software package that can perform fast tomographic
inversions that scales linearly with the number of measurements, linearly with
the length of the reconstruction cube (and not the number of voxels) and
linearly with the number of cores and can use data from different sources and
with a variety of physical models: TomograPy
(http://nbarbey.github.com/TomograPy/), an open-source software freely
available on the Python Package Index. For performance, TomograPy uses a
parallelized-projection algorithm. It relies on the World Coordinate System
standard to manage various data sources. A variety of inversion algorithms are
provided to perform the tomographic-map estimation. A test suite is provided
along with the code to ensure software quality. Since it makes use of the
Siddon algorithm it is restricted to rectangular parallelepiped voxels but the
spherical geometry of the corona can be handled through proper use of priors.
We describe the main features of the code and show three practical examples
of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1
data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table
Recommended from our members
A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host
The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Host resistance imposes stress on invading pathogens that can lead to changes in the bacterial genome enabling the pathogen to escape host resistance. We have observed this phenomenon with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genomic island PPHGI-1 carrying the effector gene avrPphB from its chromosome are infective against previously resistant plant hosts. However, we have never observed island extinction from the pathogen population within a host suggesting the island is maintained. Here we present a mathematical model which predicts different possible fates for the island in the population; one outcome indicated that PPHGI-1 would be maintained at low frequency in the population long term if it confers a fitness benefit. We empirically tested this prediction and determined that PPHGI-1 frequency in the bacterial population drops to a low but consistently detectable level during host resistance. Once PPHGI-1-carrying cells encounter a susceptible host, they rapidly increase in the population in a negative frequency dependent manner. Importantly, our data show that mobile genetic elements can persist within the bacterial population and increase in frequency under favourable conditions
- …