686 research outputs found

    Circular orbits and spin in black-hole initial data

    Get PDF
    The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasi-local measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of non-spinning black hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly non-spinning black holes have appreciable quasi-local spin; furthermore, the Komar-mass condition and effective potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasi-circular orbits for non-spinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D, revtex4; Fixed error in computing proper separation and updated figures and tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec. IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in Eq. (A7b), included minor changes from PRD editin

    Intravitreal AAV-Delivery of Genetically Encoded Sensors Enabling Simultaneous Two-Photon Imaging and Electrophysiology of Optic Nerve Axons

    Get PDF
    Myelination of axons by oligodendrocytes is a key feature of the remarkably fast operating CNS. Oligodendrocytes not only tune axonal conduction speed but are also suggested to maintain long-term axonal integrity by providing metabolic support to the axons they ensheath. However, how myelinating oligodendrocytes impact axonal energy homeostasis remains poorly understood and difficult to investigate. Here, we provide a method of how to study electrically active myelinated axons expressing genetically encoded sensors by combining electrophysiology and two-photon imaging of acutely isolated optic nerves. We show that intravitreal adeno-associated viral (AAV) vector delivery is an efficient tool to achieve functional sensor expression in optic nerve axons, which is demonstrated by measuring axonal ATP dynamics following AAV-mediated sensor expression. This novel approach allows for fast expression of any optical sensor of interest to be studied in optic nerve axons without the need to go through the laborious process of producing new transgenic mouse lines. Viral-mediated biosensor expression in myelinated axons and the subsequent combination of nerve recordings and sensor imaging outlines a powerful method to investigate oligodendroglial support functions and to further interrogate cellular mechanisms governing axonal energy homeostasis under physiological and pathological conditions

    Block-Diagonalization and f-electron Effects in Tight-Binding Theory

    Full text link
    We extend a tight-binding total energy method to include f-electrons, and apply it to the study of the structural and elastic properties of a range of elements from Be to U. We find that the tight-binding parameters are as accurate and transferable for f-electron systems as they are for d-electron systems. In both cases we have found it essential to take great care in constraining the fitting procedure by using a block-diagonalization procedure, which we describe in detail.Comment: 9 pages, 6 figure

    A regulatory pathway model of neuropsychological disruption in Havana syndrome

    Get PDF
    IntroductionIn 2016 diplomatic personnel serving in Havana, Cuba, began reporting audible sensory phenomena paired with onset of complex and persistent neurological symptoms consistent with brain injury. The etiology of these Anomalous Health Incidents (AHI) and subsequent symptoms remains unknown. This report investigates putative exposure-symptom pathology by assembling a network model of published bio-behavioral pathways and assessing how dysregulation of such pathways might explain loss of function in these subjects using data available in the published literature. Given similarities in presentation with mild traumatic brain injury (mTBI), we used the latter as a clinically relevant means of evaluating if the neuropsychological profiles observed in Havana Syndrome Havana Syndrome might be explained at least in part by a dysregulation of neurotransmission, neuro-inflammation, or both.MethodAutomated text-mining of >9,000 publications produced a network consisting of 273 documented regulatory interactions linking 29 neuro-chemical markers with 9 neuropsychological constructs from the Brief Mood Survey, PTSD Checklist, and the Frontal Systems Behavior Scale. Analysis of information flow through this network produced a set of regulatory rules reconciling to within a 6% departure known mechanistic pathways with neuropsychological profiles in N = 6 subjects.ResultsPredicted expression of neuro-chemical markers that jointly satisfy documented pathways and observed symptom profiles display characteristically elevated IL-1B, IL-10, NGF, and norepinephrine levels in the context of depressed BDNF, GDNF, IGF1, and glutamate expression (FDR < 5%). Elevations in CRH and IL-6 were also predicted unanimously across all subjects. Furthermore, simulations of neurological regulatory dynamics reveal subjects do not appear to be “locked in” persistent illness but rather appear to be engaged in a slow recovery trajectory.DiscussionThis computational analysis of measured neuropsychological symptoms in Havana-based diplomats proposes that these AHI symptoms may be supported in part by disruption of known neuroimmune and neurotransmission regulatory mechanisms also associated with mTBI

    A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions

    Get PDF
    The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
    corecore