4,253 research outputs found
Wall slip and flow of concentrated hard-sphere colloidal suspensions
We present a comprehensive study of the slip and flow of concentrated
colloidal suspensions using cone-plate rheometry and simultaneous confocal
imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid
nature of the suspension causes a transition in the rheology from
Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip
behavior at low stress, which is suppressed for sufficient colloid-wall
attraction or colloid-scale wall roughness. Visualization shows how the
slip-shear transition depends on gap size and the boundary conditions at both
walls and that partial slip persist well above the yield stress. A
phenomenological model, incorporating the Bingham slip law and HB bulk flow,
fully accounts for the behavior. Microscopically, the Bingham law is related to
a thin (sub-colloidal) lubrication layer at the wall, giving rise to a
characteristic dependence of slip parameters on particle size and
concentration. We relate this to the suspension's osmotic pressure and yield
stress and also analyze the influence of van der Waals interaction. For the
largest concentrations, we observe non-uniform flow around the yield stress, in
line with recent work on bulk shear-banding of concentrated pastes. We also
describe residual slip in concentrated liquid suspensions, where the vanishing
yield stress causes coexistence of (weak) slip and bulk shear flow for all
measured rates
Nuclear shell-model calculations for 6Li and 14N with different NN potentials
Two ``phase-shift equivalent'' local NN potentials with different
parametrizations, Reid93 and NijmII, which were found to give nearly identical
results for the triton by Friar et al, are shown to yield remarkably similar
results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The
results are compared with those for the widely used Hamada-Johnson hard-core
and the original Reid soft-core potentials, which have larger deuteron D-state
percentages. The strong correlation between the tensor strength and the nuclear
binding energy is confirmed. However, many nuclear-structure properties seem to
be rather insensitive to the details of the NN potential and, therefore, cannot
be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9,
1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request),
University of Arizona Physics Preprint (Number not yet assigned
Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li
We apply the Lee-Suzuki iteration method to calculate the linked-folded
diagram series for a new Nijmegen local NN potential. We obtain an exact
starting-energy-independent effective two-body interaction for a multi-shell,
no-core, harmonic-oscillator model space. It is found that the resulting
effective-interaction matrix elements can be well approximated by the Brueckner
G-matrix elements evaluated at starting energies selected in a simple way.
These starting energies are closely related to the energies of the initial
two-particle states in the ladder diagrams. The ``exact'' and approximate
effective interactions are used to calculate the energy spectrum of 6Li in
order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request).
University of Arizona preprint, Number unassigne
The large‐scale freshwater cycle of the Arctic
This paper synthesizes our understanding of the Arctic\u27s large‐scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA‐40 reanalysis and land surface and ice‐ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (∼8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (∼8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ∼84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability
Auxiliary potential in no-core shell-model calculations
The Lee-Suzuki iteration method is used to include the folded diagrams in the
calculation of the two-body effective interaction between
two nucleons in a no-core model space. This effective interaction still depends
upon the choice of single-particle basis utilized in the shell-model
calculation. Using a harmonic-oscillator single-particle basis and the
Reid-soft-core {\it NN} potential, we find that overbinds
^4\mbox{He} in 0, 2, and model spaces. As the size of the
model space increases, the amount of overbinding decreases significantly. This
problem of overbinding in small model spaces is due to neglecting effective
three- and four-body forces. Contributions of effective many-body forces are
suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request).
AZ-PH-TH/94-2
Bulk and edge excitations of a Hall ferromagnet
In this article, we shall focus on the collective dynamics of the fermions in
a quantum Hall droplet. Specifically, we propose to look at the
quantum Hall ferromagnet. In this system, the electron spins are ordered in the
ground state due to the exchange part of the Coulomb interaction and the Pauli
exclusion principle. The low energy excitations are ferromagnetic magnons. In
order to obtain an effective Lagrangian for these magnons, we shall introduce
bosonic collective coordinates in the Hilbert space of many-fermion systems.
These collective coordinates describe a part of the fermionic Hilbert space.
Using this technique, we shall interpret the magnons as bosonic collective
excitations in the Hilbert space of the many-electron Hall system. Furthermore,
by considering a Hall droplet of finite extent, we shall also obtain the
effective Lagrangian governing the spin collective excitations at the edge of
the sample.Comment: 30 pages, plain TeX, no figure
KSHV SOX mediated host shutoff: the molecular mechanism underlying mRNA transcript processing
Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated
On defining the Hamiltonian beyond quantum theory
Energy is a crucial concept within classical and quantum physics. An
essential tool to quantify energy is the Hamiltonian. Here, we consider how to
define a Hamiltonian in general probabilistic theories, a framework in which
quantum theory is a special case. We list desiderata which the definition
should meet. For 3-dimensional systems, we provide a fully-defined recipe which
satisfies these desiderata. We discuss the higher dimensional case where some
freedom of choice is left remaining. We apply the definition to example toy
theories, and discuss how the quantum notion of time evolution as a phase
between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of
Physics topical collection on Foundational Aspects of Quantum Informatio
A Preliminary Investigation of the Effect of Acceptance and Commitment Therapy on Neural Activation in Clinical Perfectionism
Clinical perfectionism is associated with various cognitive processes including performance monitoring and emotion regulation. This exploratory study analyzed neurological data from a randomized controlled trial for clinical perfectionism that compared acceptance and commitment therapy (ACT) to a waitlist control. The objective was to assess the effect of ACT on neural activation. Twenty-nine participants underwent a functional near-infrared spectroscopy assessment during which they completed behavioral tasks designed to elicit error detection and error generation at pre- and posttreatment. The hemodynamic response function (HRF) in the dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and right inferior parietal lobe was analyzed using mixed effects models. In all areas, we found reductions or smaller increases in the total HRF for experimental tasks from pre- to posttreatment in the ACT condition compared to the waitlist condition. Decreases in total oxygenated hemoglobin are consistent with diminished recruitment of neurons in response to previously emotionally salient stimuli, possibly representing greater cognitive processing efficiency. Our preliminary findings tentatively support the processes of change posited by the theory underlying ACT and highlight the need for more precise methodology in neurological assessment to adequately evaluate how treatment affects neurological function. Limitations include lack of an active comparison condition and behavioral data
Wave Function of the Largest Skyrmion on a Sphere
It has been clarified that charged excitation known as a skyrmion exists
around the ferromagnetic ground state at the Landau level filling factor
, where is an odd integer. An infinite sized skyrmion is realized
in the absence of the spin-Zeeman splitting or for double-layered systems.
Analytical form of the wave function is identified at and
through exact diagonalization of the Hamiltonian for finite sized spherical
systems. It is clarified that the skyrmion wave functions at and
are qualitatively different: they are not related by the composite
fermion transformation. Long-range behavior of the skyrmion wave function
around is shown to be consistent with the semiclassical picture of the
skyrmion.Comment: 4 pages. to be published in J. Phys. Soc. Jpn. Vol.67 No.10. Three
references are adde
- …