27,280 research outputs found
Improving Performance of Iterative Methods by Lossy Checkponting
Iterative methods are commonly used approaches to solve large, sparse linear
systems, which are fundamental operations for many modern scientific
simulations. When the large-scale iterative methods are running with a large
number of ranks in parallel, they have to checkpoint the dynamic variables
periodically in case of unavoidable fail-stop errors, requiring fast I/O
systems and large storage space. To this end, significantly reducing the
checkpointing overhead is critical to improving the overall performance of
iterative methods. Our contribution is fourfold. (1) We propose a novel lossy
checkpointing scheme that can significantly improve the checkpointing
performance of iterative methods by leveraging lossy compressors. (2) We
formulate a lossy checkpointing performance model and derive theoretically an
upper bound for the extra number of iterations caused by the distortion of data
in lossy checkpoints, in order to guarantee the performance improvement under
the lossy checkpointing scheme. (3) We analyze the impact of lossy
checkpointing (i.e., extra number of iterations caused by lossy checkpointing
files) for multiple types of iterative methods. (4)We evaluate the lossy
checkpointing scheme with optimal checkpointing intervals on a high-performance
computing environment with 2,048 cores, using a well-known scientific
computation package PETSc and a state-of-the-art checkpoint/restart toolkit.
Experiments show that our optimized lossy checkpointing scheme can
significantly reduce the fault tolerance overhead for iterative methods by
23%~70% compared with traditional checkpointing and 20%~58% compared with
lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
Lorentzian spin foam amplitudes: graphical calculus and asymptotics
The amplitude for the 4-simplex in a spin foam model for quantum gravity is
defined using a graphical calculus for the unitary representations of the
Lorentz group. The asymptotics of this amplitude are studied in the limit when
the representation parameters are large, for various cases of boundary data. It
is shown that for boundary data corresponding to a Lorentzian simplex, the
asymptotic formula has two terms, with phase plus or minus the Lorentzian
signature Regge action for the 4-simplex geometry, multiplied by an Immirzi
parameter. Other cases of boundary data are also considered, including a
surprising contribution from Euclidean signature metrics.Comment: 30 pages. v2: references now appear. v3: presentation greatly
improved (particularly diagrammatic calculus). Definition of "Regge state"
now the same as in previous work; signs change in final formula as a result.
v4: two references adde
A model for silicon solar cell performance in space Final report
Model for silicon solar cell performance in spac
Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys
The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation
Proton-induced damage to silicon solar cell assemblies a state-of-the-art survey Quarterly report
Literature review on proton damage of irradiated silicon solar cell
Effects of uniform damage to silicon solar cells
Uniform damage to silicon solar cells by fast protons or electron
Asymptotics of 4d spin foam models
We study the asymptotic properties of four-simplex amplitudes for various
four-dimensional spin foam models. We investigate the semi-classical limit of
the Ooguri, Euclidean and Lorentzian EPRL models using coherent states for the
boundary data. For some classes of geometrical boundary data, the asymptotic
formulae are given, in all three cases, by simple functions of the Regge action
for the four-simplex geometry.Comment: 10 pages, Proceedings for the 2nd Corfu summer school and workshop on
quantum gravity and quantum geometry, talk given by Winston J. Fairbair
On the causal Barrett--Crane model: measure, coupling constant, Wick rotation, symmetries and observables
We discuss various features and details of two versions of the Barrett-Crane
spin foam model of quantum gravity, first of the Spin(4)-symmetric Riemannian
model and second of the SL(2,C)-symmetric Lorentzian version in which all
tetrahedra are space-like. Recently, Livine and Oriti proposed to introduce a
causal structure into the Lorentzian Barrett--Crane model from which one can
construct a path integral that corresponds to the causal (Feynman) propagator.
We show how to obtain convergent integrals for the 10j-symbols and how a
dimensionless constant can be introduced into the model. We propose a `Wick
rotation' which turns the rapidly oscillating complex amplitudes of the Feynman
path integral into positive real and bounded weights. This construction does
not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard
numerical simulation algorithms. In addition, we identify the local symmetries
of the models and show how their four-simplex amplitudes can be re-expressed in
terms of the ordinary relativistic 10j-symbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the
model, in terms of the continuous connection variables and determine the most
general observable in the connection picture. Everything is done on a fixed
two-complex.Comment: 22 pages, LaTeX 2e, 1 figur
Effective interactions for light nuclei: an effective (field theory) approach
One of the central open problems in nuclear physics is the construction of
effective interactions suitable for many-body calculations. We discuss a
recently developed approach to this problem, where one starts with an effective
field theory containing only fermion fields and formulated directly in a
no-core shell-model space. We present applications to light nuclei and to
systems of a few atoms in a harmonic-oscillator trap. Future applications and
extensions, as well as challenges, are also considered
- …