3,815 research outputs found

    RXTE Studies of X-ray Spectral Variations with Accretion Rate in 4U 1915-05

    Full text link
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1915-05 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996. 4U 1915-05 is an X-ray burster (XRB) known to exhibit a ~199-day modulation in its 2--12 keV flux. Observations were performed with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study accretion rate-related spectral changes. We obtain good fits with a model consisting of a blackbody and an exponentially cut-off power law. The spectral parameters are strongly correlated with both the broad-band (2--50 keV) luminosity and the position in the color-color diagram, with the source moving from a low hard state to a high soft state as the accretion rate increases. The blackbody component appears to drive the spectral evolution. Our results are consistent with a geometry in which the soft component arises from an optically thick boundary layer and the hard component from an extended Comptonizing corona. Comparing our results with those of a similar study of the brighter source 4U 1820-30 (Bloser et al. 2000), we find that the two ultra-compact LMXBs occupy similar spectral states even though the transitions occur at very different total luminosities.Comment: 27 pages LaTeX, 8 figures, accepted to the Astrophysical Journa

    Morphological analysis on the coherence of kHz QPOs

    Full text link
    We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) lowmass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2 ~ 20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.Comment: 8 pages, 8 figures, publishe

    Effect of the Equivalence Between Topological and Electric Charge on the Magnetization of the Hall Ferromagnet

    Full text link
    The dependence on temperature of the spin magnetization of a two-dimensional electron gas at filling factor unity is studied. Using classical Monte Carlo simulations we analyze the effect that the equivalence between topological and electrical charge has on the the behavior of the magnetization. We find that at intermediate temperatures the spin polarization increases in a thirty per cent due to the Hartree interaction between charge fluctuations.Comment: 4 pages. Submitted to Phys.Rev.

    ASCA Observations of GX 354-0 and KS 1731-260

    Get PDF
    We report on ASCA observations of the low mass X-ray binaries GX 354-0 and KS 1731-260. The spectrum of GX 354-0 is best described as a power-law or a Comptonized spectrum with tau ~ 5 and kT ~ 8 keV and a residual at ~6.5 keV. The residual may be a disk reflection or a Compton broadened Gaussian line from the hot inner ADAF-like coronal region. The absorption column density to the source is 2.9e22 cm^-2. No soft thermal component was detected. The spectrum from KS 1731-260 is softer and it is best fit with a two component model with a column density of 1.1e22 cm^-2. The likely interpretation is emission from a Comptonizing cloud with an optical depth tau>12 and either a neutron star or a disk blackbody emission. We discuss the likely location of the Comptonizing cloud for both sources within the context of several proposed emission models.Comment: Accepted for publication in the Astrophysical Journa

    Skyrme Crystal In A Two-Dimensional Electron Gas

    Full text link
    The ground state of a two-dimensional electron gas at Landau level filling factors near ν=1\nu =1 is a Skyrme crystal with long range order in the positions and orientations of the topologically and electrically charged elementary excitations of the ν=1\nu=1 ferromagnetic ground state. The lowest energy Skyrme crystal is a square lattice with opposing postures for topological excitations on opposite sublattices. The filling factor dependence of the electron spin-polarization, calculated for the square lattice Skyrme crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from [email protected]

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    RXTE Studies of Long-Term X-ray Spectral Variations in 4U 1820-30

    Get PDF
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll'' source X-ray burster (XRB) located in the globular cluster NGC 6624. It is known to have an 11 minute binary period and a ~176 day modulation in its 2--12 keV flux. Observations were made with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study flux-related spectral changes. There are clear correlations between our fitted spectral parameters and both the broad-band (2--50 keV) flux and the position in the color-color diagram, as described by the parameter S_a introduced by Mendez et al. (1999). In addition, we find a strong correlation between the position in the color-color diagram and the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further support to the notion that evidence for the last stable orbit in the accretion disk of 4U 1820-30 has been observed. For a model consisting of Comptonization of cool photons by hot electrons plus an additional blackbody component, we report an abrupt change in the spectral parameters at the same accretion rate at which the kHz QPOs disappear. For a model consisting of a multicolor disk blackbody plus a cut-off power law, we find that the inner disk radius reaches a minimum at the same accretion rate at which the kHz QPO frequency saturates, as expected if the disk reaches the last stable orbit. Both models face theoretical and observational problems when interpreted physically for this system.Comment: 39 pages, 11 figures, accepted to the Astrophysical Journa

    A Chandra observation of the long-duration X-ray transient KS 1731-260 in quiescence: too cold a neutron star?

    Get PDF
    After more than a decade of actively accreting at about a tenth of the Eddington critical mass accretion rate, the neutron-star X-ray transient KS 1731-260 returned to quiescence in early 2001. We present a Chandra/ACIS-S observation taken several months after this transition. We detected the source at an unabsorbed flux of ~2 x 10^{-13} erg/cm^2/s (0.5-10 keV). For a distance of 7 kpc, this results in a 0.5-10 keV luminosity of ~1 x 10^{33} erg/s and a bolometric luminosity approximately twice that. This quiescent luminosity is very similar to that of the other quiescent neutron star systems. However, if this luminosity is due to the cooling of the neutron star, this low luminosity may indicate that the source spends at least several hundreds of years in quiescence in between outbursts for the neutron star to cool. If true, then it might be the first such X-ray transient to be identified and a class of hundreds of similar systems may be present in the Galaxy. Alternatively, enhanced neutrino cooling could occur in the core of the neutron star which would cool the star more rapidly. However, in that case the neutron star in KS 1731-260 would be more massive than those in the prototypical neutron star transients (e.g., Aql X-1 or 4U 1608-52).Comment: Accepted for publicaton in ApJ letters, 13 September 200
    • …
    corecore