631 research outputs found

    A comprehensive study of the thermophysical and rheological properties of ZrO2 based nanofluids as geothermal fluids

    Get PDF
    Geothermal heat pump systems in residential and commercial applications have become popular in many countries over the past years. The heat transfer performance of the ground heat exchangers in these systems has still room for improvement since they have huge influence on the overall efficiency. Likewise, new heat transfer fluids with enhanced properties, known as nanofluids, have been proposed as a potential solution to substitute the conventional working fluids and to improve the heat transfer processes and performance. A reliable and appropriated proposal of nanofluids for a particular application must include a complete fluid dynamic characterization including thermophysical, rheological, heat transfer coefficients, and pressure drops analysis, as well as physical or chemical characterization of the nanomaterial. In this study, a novel proposal of propylene glycol:water (10:90 vol%)-based zirconium oxide nanofluids of different nanoparticle mass concentrations (0.25, 0.50, 0.75, 1.0, and 5.0 wt%) as possible geothermal working fluids and their thermophysical and rheological characterization are performed. Thus, the nanopowder was extensively investigated by means of Transmission Electron Microscopy, High Resolution Transmission Electron Microscopy, X-Ray diffraction, and Ultraviolet visible spectroscopy obtaining the shape, size distribution, d-spacing, electron diffraction pattern, and crystallinity. Then, thermal conductivities, dynamic viscosities, densities, and isobaric heat capacities for base fluid and nanofluids were measured by transient hot wire, rotational rheometry, vibrating tube, and differential scanning calorimetry methods, respectively. Increases in thermal conductivity, dynamic viscosity, and density of the nanofluids up to 2.8%, 13%, and 4.1% were found, respectively, while decreases in heat capacity reached 11% in comparison to the base fluid. Different models and equations were also employed to analyse the experimental data.Agencia Estatal de Investigación | Ref. PID2020-112846RB-C21Agencia Estatal de Investigación | Ref. PDC2021-121225-C21European Cooperation in Science and Technology | Ref. CIG15119Fundação para a Ciência e a Tecnologia | Ref. UIDB/50022/2020Agencia Estatal de Investigación | Ref. PRE2021-097589Xunta de Galicia | Ref. ED481A-2021/284Universidade de Vigo/CISU

    Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems

    Get PDF
    The measurement of high-dimensional entangled states of orbital angular momentum prepared by spontaneous parametric down-conversion can be considered in two separate stages: a generation stage and a detection stage. Given a certain number of generated modes, the number of measured modes is determined by the measurement apparatus. We derive a simple relationship between the generation and detection parameters and the number of measured entangled modes.Comment: 6 pages, 4 figure

    Cosmic Microwave Background Anisotropy with Cosine-Type Quintessence

    Full text link
    We study the Cosmic Microwave Background (CMB) anisotropies produced by cosine-type quintessence models. In our analysis, effects of the adiabatic and isocurvature fluctuations are both taken into account. For purely adiabatic fluctuations with scale invariant spectrum, we obtain a stringent constraint on the model parameters using the CMB data from COBE, BOOMERanG and MAXIMA. Furthermore, it is shown that isocurvature fluctuations have significant effects on the CMB angular power spectrum at low multipoles in some parameter space, which may be detectable in future satellite experiments. Such a signal may be used to test the cosine-type quintessence models.Comment: 21 pages, 9 figure

    Classification of forest management approaches: a new conceptual framework and its applicability to European forestry

    Get PDF
    The choice between different forest management practices is a crucial step in short, medium, and long-term decision making in forestry and when setting up measures to support a regional or national forest policy. Some conditions such as biogeographically determined site factors, exposure to major disturbances, and societal demands are predetermined, whereas operational processes such as species selection, site preparation, planting, tending, or thinning can be altered by management. In principle, the concept of a forest management approach provides a framework for decision making, including a range of silvicultural operations that influence the development of a stand or group of trees over time. These operations vary among silvicultural systems and can be formulated as a set of basic principles. Consequently, forest management approaches are essentially defined by coherent sets of forest operation processes at a stand level. Five ideal forest management approaches (FMAs) representing a gradient of management intensity are described using specific sets of basic principles that enable comparison across European forests. Each approach is illustrated by a regional European case study. The observed regional variations resulting from changing species composition, stand density, age structure, stand edges, and site conditions can be interpreted using the FMA framework. Despite being arranged along an intensity gradient, the forest management approaches are not considered to be mutually exclusive, as the range of options allows for greater freedom in selecting potential silvicultural operations. As derived goods and services are clearly affected, the five forest management approaches have implications for sustainability. Thus, management objectives can influence the balance between the economic, ecological, and social dimensions of sustainability. The utility of this framework is further demonstrated through the different contributions to this special issue

    M-Theory Moduli Space and Cosmology

    Get PDF
    We conduct a systematic search for a viable string/M-theory cosmology, focusing on cosmologies that include an era of slow-roll inflation, after which the moduli are stabilized and the Universe is in a state with an acceptably small cosmological constant. We observe that the duality relations between different cosmological backgrounds of string/M-theory moduli space are greatly simplified, and that this simplification leads to a truncated moduli space within which possible cosmological solutions lie. We review some known challenges to four dimensional models in the "outer", perturbative, region of moduli space, and use duality relations to extend them to models of all of the (compactified) perturbative string theories and 11D supergravity, including brane world models. We conclude that cosmologies restricted to the outer region are not viable, and that the most likely region of moduli space in which to find realistic cosmology is the "central", non-perturbative region, with coupling and compact volume both of order unity, in string units.Comment: 42 pages, 3 figure

    Cosmic Acceleration in Brans-Dicke Cosmology

    Full text link
    We consider Brans-Dicke theory with a self-interacting potential in Einstein conformal frame. We show that an accelerating expansion is possible in a spatially flat universe for large values of the Brans-Dicke parameter consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1Bs)a3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.001260.001260.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.7750.01610.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Cosmological Dynamics of Phantom Field

    Get PDF
    We study the general features of the dynamics of the phantom field in the cosmological context. In the case of inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the universe with the equation of state parameter wϕ<1w_{\phi} < -1. The de-Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for 2.4<wϕ<1-2.4 < w_{\phi} < -1 at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear in Physical Review

    On exact solutions for quintessential (inflationary) cosmological models with exponential potentials

    Full text link
    We first study dark energy models with a minimally-coupled scalar field and exponential potentials, admitting exact solutions for the cosmological equations: actually, it turns out that for this class of potentials the Einstein field equations exhibit alternative Lagrangians, and are completely integrable and separable (i.e. it is possible to integrate the system analytically, at least by quadratures). We analyze such solutions, especially discussing when they are compatible with a late time quintessential expansion of the universe. As a further issue, we discuss how such quintessential scalar fields can be connected to the inflationary phase, building up, for this class of potentials, a quintessential inflationary scenario: actually, it turns out that the transition from inflation toward late-time exponential quintessential tail admits a kination period, which is an indispensable ingredient of this kind of theoretical models. All such considerations have also been done by including radiation into the model.Comment: Revtex4, 10 figure

    Born-Infeld Type Phantom Model in the ωω\omega-\omega' Plane

    Full text link
    In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the ωω\omega-\omega' plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to NN(the logarithm of the scale factor aa). We find the scalar field equation of motion in ωω\omega-\omega' plane, and show mathematically the property of attractor solutions which correspond to ωϕ1\omega_\phi\sim-1, Ωϕ=1\Omega_\phi=1, which avoid the "Big rip" problem and meets the current observations well.Comment: 6 pages, 3 figures, some references adde
    corecore