37 research outputs found

    Sirtuins and Hypoxia in EMT Control

    Get PDF
    Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIFindependent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach

    Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery

    Get PDF
    Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity

    Protective Role of the M-Sec-Tunneling Nanotube System in Podocytes

    Get PDF
    Podocyte dysfunction and loss are major determinants in the development of proteinuria. FSGS is one of the most common causes of proteinuria, but the mechanisms leading to podocyte injury or conferring protection against FSGS remain poorly understood. The cytosolic protein M-Sec has been involved in the formation of tunneling nanotubes (TNTs), membrane channels that transiently connect cells and allow intercellular organelle transfer. Whether podocytes express M-Sec is unknown and the potential relevance of the M-Sec-TNT system in FSGS has not been explored

    Validation of the T-Lymphocyte Subset Index (TLSI) as a Score to Predict Mortality in Unvaccinated Hospitalized COVID-19 Patients

    Get PDF
    Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0–2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/µL, CD3+CD8+ < 194 cells/µL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, The Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortalit

    The Impact of Social Enterprises: A Bibliometric Analysis From 1991 to 2020

    No full text
    The aim of this work is to provide, through a bibliometric analysis of the last 30 years of thematic literature, an overview on the contribution of social enterprises to the achievement of global goals. A bibliometric method has been used to analyze the characteristics, citation patterns and content of 3318 documents published in international academic journals, books review and chapters, editorial material and proceedings papers. Considering our findings, the bibliometric analysis has shown that there are journals that have had a greater production on the topic with an impact on research. Thanks to the work of the most impactful authors, it emerges that the case study is the most used method to demonstrate the centrality of social enterprises in social innovation. The analysis also shows that the centrality of the themes is linked to innovation, impact, management and performance, demonstrating the assumption that the driver of innovation in terms of social impact is given by these types of companies. The research also shows the keyword evolution through the years. Through the coding activity, it has also been possible to demonstrate that by transposing the global sustainability objectives to the local that the more in-depth ones are addressed on the issues of sustainable economy and fair, responsible and sustainable innovation, while there is much shortcoming regarding the achievement of gender equality, sustainable water management but even more on the reduction of inequality between nations. The latter is probably conditioned by the more global target and therefore not easily approachable to social enterprises

    Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells

    No full text
    Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of Cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy

    Putative Receptors for Gravity Sensing in Mammalian Cells: The Effects of Microgravity

    No full text
    Gravity is a constitutive force that influences life on Earth. It is sensed and translated into biochemical stimuli through the so called “mechanosensors”, proteins able to change their molecular conformation in order to amplify external cues causing several intracellular responses. Mechanosensors are widely represented in the human body with important structures such as otholiths in hair cells of vestibular system and statoliths in plants. Moreover, they are also present in the bone, where mechanical cues can cause bone resorption or formation and in muscle in which mechanical stimuli can increase the sensibility for mechanical stretch. In this review, we discuss the role of mechanosensors in two different conditions: normogravity and microgravity, emphasizing their emerging role in microgravity. Microgravity is a singular condition in which many molecular changes occur, strictly connected with the modified gravity force and free fall of bodies. Here, we first summarize the most important mechanosensors involved in normogravity and microgravity. Subsequently, we propose muscle LIM protein (MLP) and sirtuins as new actors in mechanosensing and signaling transduction under microgravity

    High mobility group box 1 in women with unexplained recurrent pregnancy loss

    No full text
    Objectives: To investigate whether high mobility group box 1 (HMGB1) is involved in unexplained recurrent pregnancy loss (uRPL). Methods: Plasma levels of HMGB1 were measured by ELISA in non-pregnant women with (n=44) and without (n=53 controls) uRPL. Their platelets and plasma-derived microvesicles (MVs) were also assayed for HMGB1. Endometrial biopsies were taken in selected uRPL (n=5) and control women (n=5) and the tissue expression of HMGB1 was determined by western blot and immunohistochemistry (IHC). Results: plasma levels of HMGB1 were significantly higher in women with uRPL than in control women. HMGB1 content in platelets and MVs obtained from women with uRPL was significantly higher than that obtained from control women. HMGB1 expression in endometrium was higher in tissues obtained from women with uRPL than in tissues obtained from control women. IHC analysis revealed that HMGB1 is expressed in endometrium with different patterns between uRPL and control women. Conclusions: HMGB1 could be involved in uRPL

    SIRT5 Activation and Inorganic Phosphate Binding Reduce Cancer Cell Vitality by Modulating Autophagy/Mitophagy and ROS

    No full text
    Cancer cells show increased glutamine consumption. The glutaminase (GLS) enzyme controls a limiting step in glutamine catabolism. Breast tumors, especially the triple-negative subtype, have a high expression of GLS. Our recent study demonstrated that GLS activity and ammonia production are inhibited by sirtuin 5 (SIRT5). We developed MC3138, a selective SIRT5 activator. Treatment with MC3138 mimicked the deacetylation effect mediated by SIRT5 overexpression. Moreover, GLS activity was regulated by inorganic phosphate (Pi). Considering the interconnected roles of GLS, SIRT5 and Pi in cancer growth, our hypothesis is that activation of SIRT5 and reduction in Pi could represent a valid antitumoral strategy. Treating cells with MC3138 and lanthanum acetate, a Pi chelator, decreased cell viability and clonogenicity. We also observed a modulation of MAP1LC3B and ULK1 with MC3138 and lanthanum acetate. Interestingly, inhibition of the mitophagy marker BNIP3 was observed only in the presence of MC3138. Autophagy and mitophagy modulation were accompanied by an increase in cytosolic and mitochondrial reactive oxygen species (ROS). In conclusion, our results show how SIRT5 activation and/or Pi binding can represent a valid strategy to inhibit cell proliferation by reducing glutamine metabolism and mitophagy, leading to a deleterious accumulation of ROS

    Protein turnover, lipolysis, and endogenous hormonal secretion in critically ill children

    No full text
    Objectives: The catabolic state is a major contributor to morbidity and mortality of critical illness and may be related to endocrine changes. We studied whether protein and lipid turnover correlate with insulin and growth and thyroid hormone plasma levels in critically ill infants. Design: Prospective clinical study. Setting: Pediatric intensive care unit. Patients: Twelve critically ill children and ten age-matched controls. Measurements: We measured lipolysis and protein turnover by infusing albumin-bound uniformly 13C palmitic acid and 2H3-leucine for 3 hrs and 2H5-glycerol for 5 hrs to critically ill infants. Simultaneously, we measured serum growth hormones, insulin, C-peptide, thyroid-stimulating hormone, T4, T3, albumin, retinol binding protein (RBP), and prealbumin. Hormone and serum protein levels were also measured in six children when recovered from critical illness. Ten healthy age-matched children served as controls for hormone serum levels comparison. Results: Palmitic acid and glycerol turnover were 5.6 \ub1 2.2 \u3bcmol/kg/min and 12.2 \ub1 7.3 \u3bcmol/kg/min, respectively, whereas \u3b1-ketoisocaproic turnover was 4.9 \ub1 2.8 \u3bcmol/kg/min. \u3b1-Ketoisocaproic turnover positively correlated (R = 0.7, p = .03) with duration of pediatric intensive care unit admission and with prealbumin and RBP serum levels (R = 0.9, p = .001). Insulin-like growth factor binding protein (IGFBP)-2 was significantly higher and IGFBP-3 was significantly lower in critically ill children (p = .03 and p = .04 vs. recovery phase, respectively). No other hormonal differences were found. Serum albumin was significantly lower in sick children. We found a significant correlation between prealbumin and RBP and IGFBP-3 (R = 0.6, p = 0.03 and R = 0.6, p = .04, respectively). \u3b1-Ketoisocaproic turnover positively correlated with IGFBP-1 (R = 0.79, p = .01) and did not correlate with insulin-like growth factor I (R = -0.5, p = .15 [not significant]) No other correlations were found. Lipid turnover measurements did not correlate with any endogenous hormone levels or with duration of critical illness. Conclusion: Protein turnover but not lipolysis correlated with a persisting critically ill condition, serum prealbumin, RBP, and plasma IGFBP-1
    corecore