3,301 research outputs found

    Quantum key distribution using polarized coherent states

    Full text link
    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators S^i\hat{S}_i (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.Comment: Inclusion of a discussion about noise not controlled by Eve; inclusion of a figure. A simplified version of this paper was submitted to a Conference in Brazil (XXVII ENFMC) in 16/02/200

    Constraining New Physics with D meson decays

    Get PDF
    Latest Lattice results on DD form factors evaluation from first principles show that the standard model (SM) branching ratios prediction for the leptonic Ds→ℓνℓD_s \to \ell \nu_\ell decays and the semileptonic SM branching ratios of the D0D^0 and D+D^+ meson decays are in good agreement with the world average experimental measurements. It is possible to disprove New Physics hypothesis or find bounds over several models beyond the SM. Using the observed leptonic and semileptonic branching ratios for the D meson decays, we performed a combined analysis to constrain non standard interactions which mediate the csˉ→lνˉc\bar{s}\to l\bar{\nu} transition. This is done either by a model independent way through the corresponding Wilson coefficients or in a model dependent way by finding the respective bounds over the relevant parameters for some models beyond the standard model. In particular, we obtain bounds for the Two Higgs Doublet Model Type-II and Type III, the Left-Right model, the Minimal Supersymmetric Standard Model with explicit R-Parity violation and Leptoquarks. Finally, we estimate the transverse polarization of the lepton in the D0D^0 decay and we found it can be as high as PT=0.23P_T=0.23.Comment: 28 pages, 8 figures, 3 tables. Improved and extended analysis with updated form factors from Lattice QC

    The origin of non-classical effects in a one-dimensional superposition of coherent states

    Get PDF
    We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states

    Effective cross-Kerr nonlinearity and robust phase gates with trapped ions

    Full text link
    We derive an effective Hamiltonian that describes a cross-Kerr type interaction in a system involving a two-level trapped ion coupled to the quantized field inside a cavity. We assume a large detuning between the ion and field (dispersive limit) and this results in an interaction Hamiltonian involving the product of the (bosonic) ionic vibrational motion and field number operators. We also demonstrate the feasibility of operation of a phase gate based on our hamiltonian. The gate is insensitive to spontaneous emission, an important feature for the practical implementation of quantum computing.Comment: Included discussion of faster gates (Lamb-Dicke regime), Corrected typos, and Added reference

    Quantum Key Distribution using Continuous-variable non-Gaussian States

    Full text link
    In this work we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the Photon Added then Subtracted Coherent States (PASCS) in which one photon is added and subsequently one photon is subtracted. We analyze the performance of our protocol, compared to a coherent state based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.Comment: We have included an analysis of the simultaneous quadrature measurement attack plus 2 figures; we have also clarified some point

    Coherent states superpositions in cavity quantum electrodynamics with trapped ions

    Full text link
    We investigate how superpositions of motional coherent states naturally arise in the dynamics of a two-level trapped ion coupled to the quantized field inside a cavity. We extend our considerations including a more realistic set up where the cavity is not ideal and photons may leak through its mirrors. We found that a detection of a photon outside the cavity would leave the ion in a pure state. The statistics of the ionic state still keeps some interference effects that might be observed in the weak coupling regime.Comment: Figure and typos correcte
    • …
    corecore