4,558 research outputs found

    Characterization of vorticity in pygmy resonances and soft-dipole modes with two-nucleon transfer reactions

    Full text link
    The properties of the two-quasiparticle-like soft E1-modes and PDR have been and are systematically studied with the help of inelastic and electromagnetic experiments which essentially probe the particle-hole components of these vibrations. It is shown that further insight in their characterisation can be achieved with the help of two-nucleon transferreactions, in particular concerning the particle-particle components of the modes, in terms of absolute differential cross sections which take properly into account successive and simultaneous transfer mechanisms corrected for non-orthogonality, able to reproduce the experimental findings at the 10% level. The process 9^9Li(t,p)11(t,p)^{11}Li(1^-) is discussed, and absolute cross sections predicted.Comment: Typo corrected with respect to previous versio

    Cooper pair transfer in nuclei

    Full text link
    The second order DWBA implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations

    Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei

    Full text link
    Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus 7^7Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed dσ(7d \sigma(^7Li(t,p)9^9Li)/dΩ\Omega.Comment: Submitted to CERN proceedings for the 14th International Conference on Nuclear Reaction mechanisms, Varenna, June 15 - 19, 201

    Radioactive beams and inverse kinematics: probing the quantal texture of the nuclear vacuum

    Full text link
    The properties of the quantum electrodynamic (QED) vacuum in general, and of the nuclear vacuum (ground) state in particular are determined by virtual processes implying the excitation of a photon and of an electron--positron pair in the first case and of, for example, the excitation of a collective quadrupole surface vibration and a particle--hole pair in the nuclear case. Signals of these processes can be detected in the laboratory in terms of what can be considered a nuclear analogue of Hawking radiation. An analogy which extends to other physical processes involving QED vacuum fluctuations like the Lamb shift, pair creation by γ\gamma-rays, van der Waals forces and the Casimir effect, to the extent that one concentrates on the eventual outcome resulting by forcing a virtual process to become real, and not on the role of the black hole role in defining the event horizon. In the nuclear case, the role of this event is taken over at a microscopic, fully quantum mechanical level, by nuclear probes (reactions) acting on a virtual particle of the zero point fluctuation (ZPF) of the nuclear vacuum in a similar irreversible, no--return, fashion as the event horizon does, letting the other particle, entangled with the first one, escape to infinity, and eventually be detected. With this proviso in mind one can posit that the reactions 1^1H(11^{11}Be,10^{10}Be(2+(2^+;3.37 MeV{\rm MeV}))2^2H and 1^{1}H(11^{11}Li,9^9Li(1/21/2^-; 2.69 MeV{\rm MeV}))3^3H together with the associated γ\gamma-decay processes indicate a possible nuclear analogy of Hawking radiation
    corecore