14,377 research outputs found
Natural Gauge Hierarchy in SO(10)
It is shown that a natural gauge hierarchy and doublet-triplet splitting can
be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial
cancellations (fine-tuning) and arbitrary forms of the superpotential are
avoided, the superpotential being the most general compatible with a symmetry.
It is shown by example that the Dimopoulos-Wilczek mechanism can be protected
against the effects of higher-dimension operators possibly induced by
Planck-scale physics. Natural implementation of the mechanism leads to an
automatic Peccei-Quinn symmetry. The same local symmetries that would protect
the gauge hierarchy against Planck-scale effects tend to protect the axion
also. It is shown how realistic quark and lepton masses might arise in this
framework. It is also argued that ``weak suppression'' of proton decay can be
implemented more economically than can ``strong suppression'', offering some
grounds to hope (in the context of SO(10)) that proton decay could be seen at
Superkamiokande.Comment: 26 pages in plain LaTeX, 5 figures available on request, BA-94-0
Simulating Impacts of Extreme Weather Events on Urban Transport Infrastructure in the UK
Urban areas face many risks from future climate change and their infrastructure will be placed under more pressure
due to changes in climate extremes. Using the Tyndall Centre Urban Integrated Assessment Framework, this paper
describes a methodology used to assess the impacts of future climate extremes on transport infrastructure in
London. Utilising high-resolution projections for future climate in the UK, alongside stochastic weather generators
for downscaling, urban temperature and flooding models are used to provide information on the likelihood of future
extremes. These are then coupled with spatial network models of urban transport infrastructure and, using thresholds
to define the point at which systems cease to function normally, disruption to the networks can be simulated.
Results are shown for both extreme heat and urban surface water flooding events and the impacts on the travelling
population, in terms of both disruption time and monetary cost
Eliminating the d=5 proton decay operators from SUSY GUTs
A general analysis is made of the question whether the d=5 proton decay
operators coming from exchange of colored Higgsinos can be completely
eliminated in a natural way in supersymmetric grand unified models. It is shown
that they can indeed be in SO(10) while at the same time naturally solving the
doublet-triplet splitting problem, having only two light Higgs doublets, and
using no more than a single adjoint Higgs field. Accomplishing all of this
requires that the vacuum expectation value of the adjoint Higgs field be
proportional to the generator I_{3R} rather than to B-L, as is usually assumed.
It is shown that such models can give realistic quark and lepton masses. We
also point out a new mechanism for solving the \mu problem in the context of
SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure
Uncertainties in Atmospheric Neutrino Fluxes
An evaluation of the principal uncertainties in the computation of neutrino
fluxes produced in cosmic ray showers in the atmosphere is presented. The
neutrino flux predictions are needed for comparison with experiment to perform
neutrino oscillation studies. The paper concentrates on the main limitations
which are due to hadron production uncertainties. It also treats primary cosmic
ray flux uncertainties, which are at a lower level. The absolute neutrino
fluxes are found to have errors of around 15% in the neutrino energy region
important for contained events underground. Large cancellations of these errors
occur when ratios of fluxes are considered, in particular, the
ratio below GeV, the
ratio below GeV and
the up/down ratios above GeV are at the 1% level. A detailed
breakdown of the origin of these errors and cancellations is presented.Comment: 14 pages, 22 postscript figures, written in Revte
- …