618 research outputs found

    Exactly solvable models of adaptive networks

    Full text link
    A satisfiability (SAT-UNSAT) transition takes place for many optimization problems when the number of constraints, graphically represented by links between variables nodes, is brought above some threshold. If the network of constraints is allowed to adapt by redistributing its links, the SAT-UNSAT transition may be delayed and preceded by an intermediate phase where the structure self-organizes to satisfy the constraints. We present an analytic approach, based on the recently introduced cavity method for large deviations, which exactly describes the two phase transitions delimiting this adaptive intermediate phase. We give explicit results for random bond models subject to the connectivity or rigidity percolation transitions, and compare them with numerical simulations.Comment: 4 pages, 4 figure

    Oscillating elastic defects: competition and frustration

    Full text link
    We consider a dynamical generalization of the Eshelby problem: the strain profile due to an inclusion or "defect" in an isotropic elastic medium. We show that the higher the oscillation frequency of the defect, the more localized is the strain field around the defect. We then demonstrate that the qualitative nature of the interaction between two defects is strongly dependent on separation, frequency and direction, changing from "ferromagnetic" to "antiferromagnetic" like behavior. We generalize to a finite density of defects and show that the interactions in assemblies of defects can be mapped to XY spin-like models, and describe implications for frustration and frequency-driven pattern transitions.Comment: 4 pages, 5 figure

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy

    Breathing mode for systems of interacting particles

    Full text link
    We study the breathing mode in systems of trapped interacting particles. Our approach, based on a dynamical ansatz in the first equation of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy allows us to tackle at once a wide range of power law interactions and interaction strengths, at linear and non linear levels. This both puts in a common framework various results scattered in the literature, and by widely generalizing these, emphasizes universal characters of this breathing mode. Our findings are supported by direct numerical simulations.Comment: 4 pages, 4 figure

    Ensemble Inequivalence in Mean-field Models of Magnetism

    Full text link
    Mean-field models, while they can be cast into an {\it extensive} thermodynamic formalism, are inherently {\it non additive}. This is the basic feature which leads to {\it ensemble inequivalence} in these models. In this paper we study the global phase diagram of the infinite range Blume-Emery-Griffiths model both in the {\it canonical} and in the {\it microcanonical} ensembles. The microcanonical solution is obtained both by direct state counting and by the application of large deviation theory. The canonical phase diagram has first order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These two features are discussed in a general context and the appropriate Maxwell constructions are introduced. Some preliminary extensions of these results to weakly decaying nonintegrable interactions are presented.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/

    Ensemble inequivalence in systems with long-range interactions

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We illustrate our results showing an application to the Blume-Emery-Griffiths model. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 12 pages, no figure

    Long-range gravitational-like interaction in a neutral atomic cold gas

    Full text link
    A quasi-resonant laser induces a long-range attractive force within a cloud of cold atoms. We take advantage of this force to build in the laboratory a system of particles with a one-dimensional gravitational-like interaction, at a fluid level of modeling. We give experimental evidences of such an interaction in a cold Strontium gas, studying the density profile of the cloud, its size as a function of the number of atoms, and its breathing oscillations.Comment: 4 pages, 4 figures. Published in PRA 87, 013401 (2013

    Combinatorial models of rigidity and renormalization

    Full text link
    We first introduce the percolation problems associated with the graph theoretical concepts of (k,l)(k,l)-sparsity, and make contact with the physical concepts of ordinary and rigidity percolation. We then devise a renormalization transformation for (k,l)(k,l)-percolation problems, and investigate its domain of validity. In particular, we show that it allows an exact solution of (k,l)(k,l)-percolation problems on hierarchical graphs, for k≤l<2kk\leq l<2k. We introduce and solve by renormalization such a model, which has the interesting feature of showing both ordinary percolation and rigidity percolation phase transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure

    Large deviation techniques applied to systems with long-range interactions

    Full text link
    We discuss a method to solve models with long-range interactions in the microcanonical and canonical ensemble. The method closely follows the one introduced by Ellis, Physica D 133, 106 (1999), which uses large deviation techniques. We show how it can be adapted to obtain the solution of a large class of simple models, which can show ensemble inequivalence. The model Hamiltonian can have both discrete (Ising, Potts) and continuous (HMF, Free Electron Laser) state variables. This latter extension gives access to the comparison with dynamics and to the study of non-equilibri um effects. We treat both infinite range and slowly decreasing interactions and, in particular, we present the solution of the alpha-Ising model in one-dimension with 0≤α<10\leq\alpha<1

    Phase transitions of quasistationary states in the Hamiltonian Mean Field model

    Get PDF
    The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is studied in presence of an externally imposed magnetic field h. Lynden-Bell's theory of violent relaxation is revisited and shown to adequately capture the system dynamics, as revealed by direct Vlasov based numerical simulations in the limit of vanishing field. This includes the existence of an out-of-equilibrium phase transition separating magnetized and non magnetized phases. We also monitor the fluctuations in time of the magnetization, which allows us to elaborate on the choice of the correct order parameter when challenging the performance of Lynden-Bell's theory. The presence of the field h removes the phase transition, as it happens at equilibrium. Moreover, regions with negative susceptibility are numerically found to occur, in agreement with the predictions of the theory.Comment: 6 pages, 7 figure
    • …
    corecore