786 research outputs found

    Ensemble inequivalence: A formal approach

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 4 pages, no figures, given at the NEXT2001 conference on non-extensive thermodynamic

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy

    Ensemble Inequivalence in Mean-field Models of Magnetism

    Full text link
    Mean-field models, while they can be cast into an {\it extensive} thermodynamic formalism, are inherently {\it non additive}. This is the basic feature which leads to {\it ensemble inequivalence} in these models. In this paper we study the global phase diagram of the infinite range Blume-Emery-Griffiths model both in the {\it canonical} and in the {\it microcanonical} ensembles. The microcanonical solution is obtained both by direct state counting and by the application of large deviation theory. The canonical phase diagram has first order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These two features are discussed in a general context and the appropriate Maxwell constructions are introduced. Some preliminary extensions of these results to weakly decaying nonintegrable interactions are presented.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/

    An Introduction to the Thermodynamic and Macrostate Levels of Nonequivalent Ensembles

    Get PDF
    This short paper presents a nontechnical introduction to the problem of nonequivalent microcanonical and canonical ensembles. Both the thermodynamic and the macrostate levels of definition of nonequivalent ensembles are introduced. The many relationships that exist between these two levels are also explained in simple physical terms.Comment: Revtex4, 5 pages, 1 figur

    Breathing mode for systems of interacting particles

    Full text link
    We study the breathing mode in systems of trapped interacting particles. Our approach, based on a dynamical ansatz in the first equation of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy allows us to tackle at once a wide range of power law interactions and interaction strengths, at linear and non linear levels. This both puts in a common framework various results scattered in the literature, and by widely generalizing these, emphasizes universal characters of this breathing mode. Our findings are supported by direct numerical simulations.Comment: 4 pages, 4 figure

    Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions

    Full text link
    The system of N particles moving on a circle and interacting via a global repulsive cosine interaction is well known to display spatially inhomogeneous structures of extraordinary stability starting from certain low energy initial conditions. The object of this paper is to show in a detailed manner how these structures arise and to explain their stability. By a convenient canonical transformation we rewrite the Hamiltonian in such a way that fast and slow variables are singled out and the canonical coordinates of a collective mode are naturally introduced. If, initially, enough energy is put in this mode, its decay can be extremely slow. However, both analytical arguments and numerical simulations suggest that these structures eventually decay to the spatially uniform equilibrium state, although this can happen on impressively long time scales. Finally, we heuristically introduce a one-particle time dependent Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.

    Thermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume-Emery-Griffiths model

    Get PDF
    We illustrate a novel characterization of nonequivalent statistical mechanical ensembles using the mean-field Blume-Emery-Griffiths (BEG) model as a test model. The novel characterization takes effect at the level of the microcanonical and canonical equilibrium distributions of states. For this reason it may be viewed as a statistical characterization of nonequivalent ensembles which extends and complements the common thermodynamic characterization of nonequivalent ensembles based on nonconcave anomalies of the microcanonical entropy. By computing numerically both the microcanonical and canonical sets of equilibrium distributions of states of the BEG model, we show that for values of the mean energy where the microcanonical entropy is nonconcave, the microcanonical distributions of states are nowhere realized in the canonical ensemble. Moreover, we show that for values of the mean energy where the microcanonical entropy is strictly concave, the equilibrium microcanonical distributions of states can be put in one-to-one correspondence with equivalent canonical equilibrium distributions of states. Our numerical computations illustrate general results relating thermodynamic and statistical equivalence and nonequivalence of ensembles proved by Ellis, Haven, and Turkington [J. Stat. Phys. 101, 999 (2000)].Comment: 13 pages, 4 figures, minor typos corrected and one reference adde

    Lyapunov exponents as a dynamical indicator of a phase transition

    Full text link
    We study analytically the behavior of the largest Lyapunov exponent λ1\lambda_1 for a one-dimensional chain of coupled nonlinear oscillators, by combining the transfer integral method and a Riemannian geometry approach. We apply the results to a simple model, proposed for the DNA denaturation, which emphasizes a first order-like or second order phase transition depending on the ratio of two length scales: this is an excellent model to characterize λ1\lambda_1 as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure

    Algebraic damping in the one-dimensional Vlasov equation

    Get PDF
    We investigate the asymptotic behavior of a perturbation around a spatially non homogeneous stable stationary state of a one-dimensional Vlasov equation. Under general hypotheses, after transient exponential Landau damping, a perturbation evolving according to the linearized Vlasov equation decays algebraically with the exponent -2 and a well defined frequency. The theoretical results are successfully tested against numerical NN-body simulations, corresponding to the full Vlasov dynamics in the large NN limit, in the case of the Hamiltonian mean-field model. For this purpose, we use a weighted particles code, which allows us to reduce finite size fluctuations and to observe the asymptotic decay in the NN-body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos correcte
    • …
    corecore