8 research outputs found

    Complete quantum teleportation using nuclear magnetic resonance

    Full text link
    Quantum mechanics provides spectacular new information processing abilities (Bennett 1995, Preskill 1998). One of the most unexpected is a procedure called quantum teleportation (Bennett et al 1993) that allows the quantum state of a system to be transported from one location to another, without moving through the intervening space. Partial implementations of teleportation (Bouwmeester et al 1997, Boschi et al 1998) over macroscopic distances have been achieved using optical systems, but omit the final stage of the teleportation procedure. Here we report an experimental implementation of the full quantum teleportation operation over inter-atomic distances using liquid state nuclear magnetic resonance (NMR). The inclusion of the final stage enables for the first time a teleportation implementation which may be used as a subroutine in larger quantum computations, or for quantum communication. Our experiment also demonstrates the use of quantum process tomography, a procedure to completely characterize the dynamics of a quantum system. Finally, we demonstrate a controlled exploitation of decoherence as a tool to assist in the performance of an experiment.Comment: 15 pages, 2 figures. Minor differences between this and the published versio

    Quantum Robots and Environments

    Get PDF
    Quantum robots and their interactions with environments of quantum systems are described and their study justified. A quantum robot is a mobile quantum system that includes a quantum computer and needed ancillary systems on board. Quantum robots carry out tasks whose goals include specified changes in the state of the environment or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activities include determination of the action to be carried out in the next phase and possible recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes of neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. To each task is associated a unitary step operator T that gives the single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and computation phase step operators. Conditions that T_{a} and T_{c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task carrying out a measurement on a very simple environment is analyzed. A decision tree for the task is presented and discussed in terms of sums over phase paths. One sees that no definite times or durations are associated with the phase steps in the tree and that the tree describes the successive phase steps in each path in the sum.Comment: 30 Latex pages, 3 Postscript figures, Minor mathematical corrections, accepted for publication, Phys Rev

    Tema Con Variazioni: Quantum Channel Capacity

    Full text link
    Channel capacity describes the size of the nearly ideal channels, which can be obtained from many uses of a given channel, using an optimal error correcting code. In this paper we collect and compare minor and major variations in the mathematically precise statements of this idea which have been put forward in the literature. We show that all the variations considered lead to equivalent capacity definitions. In particular, it makes no difference whether one requires mean or maximal errors to go to zero, and it makes no difference whether errors are required to vanish for any sequence of block sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl

    Quantum Entanglement in Second-quantized Condensed Matter Systems

    Full text link
    The entanglement between occupation-numbers of different single particle basis states depends on coupling between different single particle basis states in the second-quantized Hamiltonian. Thus in principle, interaction is not necessary for occupation-number entanglement to appear. However, in order to characterize quantum correlation caused by interaction, we use the eigenstates of the single-particle Hamiltonian as the single particle basis upon which the occupation-number entanglement is defined. Using the proper single particle basis, we discuss occupation-number entanglement in important eigenstates, especially ground states, of systems of many identical particles. The discussions on Fermi systems start with Fermi gas, Hatree-Fock approximation, and the electron-hole entanglement in excitations. The entanglement in a quantum Hall state is quantified as -fln f-(1-f)ln(1-f), where f is the proper fractional part of the filling factor. For BCS superconductivity, the entanglement is a function of the relative momentum wavefunction of the Cooper pair, and is thus directly related to the superconducting energy gap. For a spinless Bose system, entanglement does not appear in the Hatree-Gross-Pitaevskii approximation, but becomes important in the Bogoliubov theory.Comment: 11 pages. Journal versio

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or
    corecore