209 research outputs found

    Evidence for the Persistence of Food Web Structure After Amphibian Extirpation in a Neotropical Stream

    Get PDF
    Species losses are predicted to simplify food web structure, and disease‐driven amphibian declines in Central America offer an opportunity to test this prediction. Assessment of insect community composition, combined with gut content analyses, was used to generate periphyton–insect food webs for a Panamanian stream, both pre‐ and post‐amphibian decline. We then used network analysis to assess the effects of amphibian declines on food web structure. Although 48% of consumer taxa, including many insect taxa, were lost between pre‐ and post‐amphibian decline sampling dates, connectance declined by less than 3%. We then quantified the resilience of food web structure by calculating the number of expected cascading extirpations from the loss of tadpoles. This analysis showed the expected effects of species loss on connectance and linkage density to be more than 60% and 40%, respectively, than were actually observed. Instead, new trophic linkages in the post‐decline food web reorganized the food web topology, changing the identity of “hub” taxa, and consequently reducing the effects of amphibian declines on many food web attributes. Resilience of food web attributes was driven by a combination of changes in consumer diets, particularly those of insect predators, as well as the appearance of generalist insect consumers, suggesting that food web structure is maintained by factors independent of the original trophic linkages

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Search for Gravitational Wave Bursts from Six Magnetars

    Get PDF
    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom

    What's new pussycat? A genealogy of animal celebrity

    Get PDF
    Animal celebrity is a human creation informing us about our socially constructed natural world. It is relational, expressive of cultural proclivities, political power plays and the quotidian everyday, as well as serious philosophical reflections on the meaning of being human. This article attempts to outline some key contours in the genealogy of animal celebrity, showing how popular culture, including fairground attractions, public relations, Hollywood movies, documentary films, zoo attractions, commercial sport and mediatised moral panics - particularly those accompanying scientific developments such as cloning - help to order, categorise and license aspects of human understanding and feelings. The nature of [animal] charisma and celebrity are explored with assistance from Jumbo the Elephant, Guy the Gorilla, Paul the clairvoyant octopus, Uggie the film star, NĂ©nette the orang-utan and Dolly the sheep. It argues that the issue of what it is to be human lies beneath the celebritised surface or, as Donna Haraway noted, the issue 'of having to face oneself'

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Directional limits on persistent gravitational waves using LIGO S5 science data

    Get PDF
    The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.Comment: 10 pages, 4 figure

    Early severe morbidity and resource utilization in South African adults on antiretroviral therapy

    Get PDF
    BACKGROUND:High rates of mortality and morbidity have been described in sub-Saharan African patients within the first few months of starting highly active antiretroviral therapy (HAART). There is limited data on the causes of early morbidity on HAART and the associated resource utilization. METHODS: A cross-sectional study was conducted of medical admissions at a secondary-level hospital in Cape Town, South Africa. Patients on HAART were identified from a register and HIV-infected patients not on HAART were matched by gender, month of admission, and age group to correspond with the first admission of each case. Primary reasons for admission were determined by chart review. Direct health care costs were determined from the provider's perspective. RESULTS: There were 53 in the HAART group with 70 admissions and 53 in the no-HAART group with 60 admissions. The median duration of HAART was 1 month (interquartile range 1-3 months). Median baseline CD4 count in the HAART group was 57 x 106 cells/L (IQR 15-115). The primary reasons for admission in the HAART group were more likely to be due to adverse drug reactions and less likely to be due to AIDS events than the no-HAART group (34% versus 7%; p < 0.001 and 39% versus 63%; p = 0.005 respectively). Immune reconstitution inflammatory syndrome was the primary reason for admission in 10% of the HAART group. Lengths of hospital stay per admission and inpatient survival were not significantly different between the two groups. Five of the 15 deaths in the HAART group were due to IRIS or adverse drug reactions. Median costs per admission of diagnostic and therapeutic services (laboratory investigations, radiology, intravenous fluids and blood, and non-ART medications) were higher in the HAART group compared with the no-HAART group (US190versusUS190 versus US111; p = 0.001), but the more expensive non-curative costs (overhead, capital, and clinical staff) were not significantly different (US1199versusUS1199 versus US1128; p = 0.525). CONCLUSIONS: Causes of early morbidity are different and more complex in HIV-infected patients on HAART. This results in greater resource utilization of diagnostic and therapeutic services
    • 

    corecore