1,096 research outputs found

    A light-front description of electromagnetic form factors for J3/2J \leq {3/2} hadrons

    Get PDF
    A review of the hadron electromagnetic form factors obtained in a light-front constituent quark model, based on the eigenfunctions of a mass operator, is presented. The relevance of different components in the q-q interaction for the description of hadron experimental form factors is analysed.Comment: 6 pages, Latex, 3 Postscript figures included. Proceedings of "Nucleon 99", Frascati, June 1999. To appear in Nucl. Phys.

    Detecting new physics contributions to the D0-D0bar mixing through their effects on B decays

    Full text link
    New physics effects may yield a detectable mass difference in the D0-D0bar system, Delta m_D. Here we show that this has an important impact on some B --> D decays. The effect involves a new source of CP violation, which arises from the interference between the phases in the B --> D decays and those in the D0-D0bar system. This interference is naturally large. New physics may well manifest itself through Delta m_D contributions to these B decays.Comment: 10 pages, Revtex, no figures. To appear in PR

    A Simple Analytical Model of the Angular Momentum Transformation in Strongly Focused Light Beams

    Full text link
    A ray-optics model is proposed to describe the vector beam transformation in a strongly focusing optical system. In contrast to usual approaches basing on the focused field distribution near the focal plane, we employ the transformed beam pattern formed immediately near the exit pupil. In this cross section, details of the output field distribution are of minor physical interest but proper allowance is made for transformation of the incident beam polarization state. This enables to obtain the spin and orbital angular momentum representations which are valid everywhere in the transformed beam space. Simple analytical results are available for the transversely homogeneous circularly polarized incident beam limited only by the circular aperture. Behavior of the spin and orbital angular momenta of the output beam and their dependences on the focusing strength (aperture angle) are analyzed. The obtained analytical results are in good qualitative and reasonable quantitative agreement to the calculation performed for the spatially inhomogeneous Gaussian and Laguerre-Gaussian beams. In application to Laguerre-Gaussian beams, the model provides possibility for analyzing the angular momentum transformation in beams already possessing some mixture of the spin and orbital angular momenta. The model supplies efficient and physically transparent means for qualitative analysis of the spin-to-orbital angular momentum conversion. It can be generalized to incident beams with complicated spatial and polarization structure.Comment: 18 pages, 5 figures. The paper has appeared as an attempt to clearly understand transformations of the light beam polarization in the course of strong focusing. It provides description of the optical vortex formation after focusing a circularly polarized beam and explains why the the orbital angular momentum emerges in the focused bea

    Prompt atmospheric neutrinos and muons: dependence on the gluon distribution function

    Full text link
    We compute the next-to-leading order QCD predictions for the vertical flux of atmospheric muons and neutrinos from decays of charmed particles, for different PDF's (MRS-R1, MRS-R2, CTEQ-4M and MRST) and different extrapolations of these at small partonic momentum fraction x. We find that the predicted fluxes vary up to almost two orders of magnitude at the largest energies studied, depending on the chosen extrapolation of the PDF's. We show that the spectral index of the atmospheric leptonic fluxes depends linearly on the slope of the gluon distribution function at very small x. This suggests the possibility of obtaining some bounds on this slope in ``neutrino telescopes'', at values of x not reachable at colliders, provided the spectral index of atmospheric leptonic fluxes could be determined.Comment: 20 pages including 8 figure

    A new approach to axial coupling constants in the QCD sum rule

    Full text link
    We derive new QCD sum rules for the axial coupling constants by considering two-point correlation functions of the axial-vector currents in a one nucleon state. The QCD sum rules tell us that the axial coupling constants are expressed by nucleon matrix elements of quark and gluon operators which are related to the sigma terms and the moments of parton distribution functions. The results for the iso-vector axial coupling constants and the 8th component of the SU(3) octet are in good agreement with experiment.Comment: 10 pages, 1 figure include

    Unified description of light- and strange-baryon spectra

    Get PDF
    We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schr\"odinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.Comment: 9 pages, including 2 figure

    Evolution of average multiplicities of quark and gluon jets

    Full text link
    The energy evolution of average multiplicities of quark and gluon jets is studied in perturbative QCD. Higher order (3NLO) terms in the perturbative expansion of equations for the generating functions are found. First and second derivatives of average multiplicities are calculated. The mean multiplicity of gluon jets is larger than that of quark jets and evolves more rapidly with energy. It is shown which quantities are most sensitive to higher order perturbative and nonperturbative corrections. We define the energy regions where the corrections to different quantities are important. The latest experimental data are discussed.Comment: 23 pages including 3 figures. Version 2 contains small correction to equation (41

    Heavy hexaquarks in a chiral constituent quark model

    Full text link
    We discuss the stability of hexaquark systems of type uuddsQ (Q=c or b) within a chiral constituent quark model which successfully describes the baryon spectra including the charmed ones. We find these systems highly unstable against strong decays and give a comparison with some of the previous literature.Comment: 17 pages, Late

    Orthogonality Catastrophe in Parametric Random Matrices

    Full text link
    We study the orthogonality catastrophe due to a parametric change of the single-particle (mean field) Hamiltonian of an ergodic system. The Hamiltonian is modeled by a suitable random matrix ensemble. We show that the overlap between the original and the parametrically modified many-body ground states, SS, taken as Slater determinants, decreases like nkx2n^{-k x^2}, where nn is the number of electrons in the systems, kk is a numerical constant of the order of one, and xx is the deformation measured in units of the typical distance between anticrossings. We show that the statistical fluctuations of SS are largely due to properties of the levels near the Fermi energy.Comment: 12 pages, 8 figure
    corecore