111 research outputs found

    Neural complexity: a graph theoretic interpretation

    No full text
    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end Tononi et al. [Proc. Nat. Acad. Sci. USA 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system's dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns et al. [Cereb. Cortex 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia et al. [Phys. Rev. E 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular we explicitly establish a dependency of neural complexity on cyclic graph motifs

    Granger causality analysis in neuroscience and neuroimaging

    Get PDF
    No description supplie

    [Letter] Misunderstandings regarding the application of Granger causality in neuroscience

    Get PDF
    No description supplie

    Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems

    Full text link
    We introduce a notion of emergence for coarse-grained macroscopic variables associated with highly-multivariate microscopic dynamical processes, in the context of a coupled dynamical environment. Dynamical independence instantiates the intuition of an emergent macroscopic process as one possessing the characteristics of a dynamical system "in its own right", with its own dynamical laws distinct from those of the underlying microscopic dynamics. We quantify (departure from) dynamical independence by a transformation-invariant Shannon information-based measure of dynamical dependence. We emphasise the data-driven discovery of dynamically-independent macroscopic variables, and introduce the idea of a multiscale "emergence portrait" for complex systems. We show how dynamical dependence may be computed explicitly for linear systems via state-space modelling, in both time and frequency domains, facilitating discovery of emergent phenomena at all spatiotemporal scales. We discuss application of the state-space operationalisation to inference of the emergence portrait for neural systems from neurophysiological time-series data. We also examine dynamical independence for discrete- and continuous-time deterministic dynamics, with potential application to Hamiltonian mechanics and classical complex systems such as flocking and cellular automata.Comment: 38 pages, 7 figure
    • …
    corecore