17,932 research outputs found

    Shear thickening of cornstarch suspensions as a re-entrant jamming transition

    Get PDF
    We study the rheology of cornstarch suspensions, a dense system of non-Brownian particles that exhibits shear thickening, i.e. a viscosity that increases with increasing shear rate. Using MRI velocimetry we show that the suspension has a yield stress. From classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid and then solid again when it shear thickens. The onset shear rate for thickening is found to depend on the measurement geometry: the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of the Reynolds dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate

    Early career professionals: the mission of a task force

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133554/1/jth13363_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133554/2/jth13363.pd

    The (In)Stability of Planetary Systems

    Full text link
    We present results of numerical simulations which examine the dynamical stability of known planetary systems, a star with two or more planets. First we vary the initial conditions of each system based on observational data. We then determine regions of phase space which produce stable planetary configurations. For each system we perform 1000 ~1 million year integrations. We examine upsilon And, HD83443, GJ876, HD82943, 47UMa, HD168443, and the solar system (SS). We find that the resonant systems, 2 planets in a first order mean motion resonance, (HD82943 and GJ876) have very narrow zones of stability. The interacting systems, not in first order resonance, but able to perturb each other (upsilon And, 47UMa, and SS) have broad regions of stability. The separated systems, 2 planets beyond 10:1 resonance, (we only examine HD83443 and HD168443) are fully stable. Furthermore we find that the best fits to the interacting and resonant systems place them very close to unstable regions. The boundary in phase space between stability and instability depends strongly on the eccentricities, and (if applicable) the proximity of the system to perfect resonance. In addition to million year integrations, we also examined stability on ~100 million year timescales. For each system we ran ~10 long term simulations, and find that the Keplerian fits to these systems all contain configurations which may be regular on this timescale.Comment: 37 pages, 49 figures, 13 tables, submitted to Ap

    The molecular environment of massive star forming cores associated with Class II methanol maser emission

    Full text link
    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding

    Use of 2G coated conductors for efficient shielding of DC magnetic fields

    Full text link
    This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.Comment: 8 pages, 3 figure
    • …
    corecore