1,270 research outputs found
Fisher-Hartwig conjecture and the correlators in XY spin chain
We apply the theorems from the theory of Toeplitz determinants to calculate
the asymptotics of the correlators in the XY spin chain in the transverse
magnetic field. The asymptotics of the correlators for the XX spin chain in the
magnetic field are obtained.Comment: LaTex, 10 page
Changes in reef tourism’s adaptive capacity after severe climate disturbances
Knowledge about adaptive capacity and its determinants has increased significantly over the last decade. However, most research on adaptive capacity has been static, not considering how adaptive capacity might change over time, particularly after severe disturbances. We studied the adaptive capacity dynamics of Asian-Pacific reef tourism operators affected by coral bleaching and tropical cyclones compared with a control group with non-affected operators. We found that impacts from tropical cyclones were associated with frequent changes in adaptive capacity. Notably, we found a reduction in tangible attributes (assets and flexibility) of adaptive capacity, whereas intangible attributes (agency and social organization) increased. Our findings provide evidence that adaptive capacity is not necessarily a slowly changing variable; rather, adaptive capacity can change rapidly and in complex ways following severe climate impacts. Understanding adaptive capacity dynamics can support adaptation programs by showing where changes in capacity are most likely to occur after severe climate impacts
The Effect of Stochastic Noise on Quantum State Transfer
We consider the effect of classical stochastic noise on control laser pulses
used in a scheme for transferring quantum information between atoms, or quantum
dots, in separate optical cavities via an optical connection between cavities.
We develop a master equation for the dynamics of the system subject to
stochastic errors in the laser pulses, and use this to evaluate the sensitivity
of the transfer process to stochastic pulse shape errors for a number of
different pulse shapes. We show that under certain conditions, the sensitivity
of the transfer to the noise depends on the pulse shape, and develop a method
for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review
Muon Capture on the Proton and Deuteron
By measuring the lifetime of the negative muon in pure protium (hydrogen-1),
the MuCap experiment determines the rate of muon capture on the proton, from
which the proton's pseudoscalar coupling g_p may be inferred. A precision of
15% for g_p has been published; this is a step along the way to a goal of 7%.
This coupling can be calculated precisely from heavy baryon chiral perturbation
theory and therefore permits a test of QCD's chiral symmetry. Meanwhile, the
MuSun experiment is in its final design stage; it will measure the rate of muon
capture on the deuteron using a similar technique. This process can be related
through pionless effective field theory and chiral perturbation theory to other
two-nucleon reactions of astrophysical interest, including proton-proton fusion
and deuteron breakup.Comment: Submitted to the proceedings of the 2007 Advanced Studies Institute
on Symmetries and Spin (SPIN-Praha-2007
Spin Gap Fixed Points in the Double Chain Problem
Applying the bosonization procedure to weakly coupled Hubbard chains we
discuss the fixed points of the renormalization group flow where all spin
excitations are gapful and a singlet pairing becomes the dominant instability.Comment: 15 pages, TeX, C Version 3.
Phase Transitions Between Topologically Distinct Gapped Phases in Isotropic Spin Ladders
We consider various two-leg ladder models exhibiting gapped phases. All of
these phases have short-ranged valence bond ground states, and they all exhibit
string order. However, we show that short-ranged valence bond ground states
divide into two topologically distinct classes, and as a consequence, there
exist two topologically distinct types of string order. Therefore, not all
gapped phases belong to the same universality class. We show that phase
transitions occur when we interpolate between models belonging to different
topological classes, and we study the nature of these transitions.Comment: 11 pages, 16 postscript figure
Atomic Model of Susy Hubbard Operators
We apply the recently proposed susy Hubbard operators to an atomic model. In
the limiting case of free spins, we derive exact results for the entropy which
are compared with a mean field + gaussian corrections description. We show how
these results can be extended to the case of charge fluctuations and calculate
exact results for the partition function, free energy and heat capacity of an
atomic model for some simple examples. Wavefunctions of possible states are
listed. We compare the accuracy of large N expansions of the susy spin
operators with those obtained using `Schwinger bosons' and `Abrikosov
pseudo-fermions'. For the atomic model, we compare results of slave boson,
slave fermion, and susy Hubbard operator approximations in the physically
interesting but uncontrolled limiting case of N->2. For a mixed representation
of spins we estimate the accuracy of large N expansions of the atomic model. In
the single box limit, we find that the lowest energy saddle-point solution
reduces to simply either slave bosons or slave fermions, while for higher boxes
this is not the case. The highest energy saddle-point solution has the
interesting feature that it admits a small region of a mixed representation,
which bears a superficial resemblance to that seen experimentally close to an
antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
Phase diagrams of spin ladders with ferromagnetic legs
The low-temperature properties of the spin S=1/2 ladder with anisotropic
ferromagnetic legs are studied using the continuum limit bosonization approach.
The weak-coupling ground state phase diagram of the model is obtained for a
wide range of coupling constants and several unconventional gapless
''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The
behavior of the ladder system in the vicinity of the ferromagnetic instability
point is discussed in detail.Comment: 11 pages, 4 figure
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark,
dust features. The morphology of these features has been examined in some
detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is
found that most of the features are constituted of long filaments. There also
exist a great number of dark structures protruding inwards from the filaments.
Many of these structures are strikingly similar to elephant trunks in H II
regions in the Milky Way Galaxy, although much larger. The structures, termed
mammoth trunks, generally are filamentary and often have shapes resembling the
letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved
into two or more filaments, many of which showing signs of being intertwined. A
model of the mammoth trunks, related to a recent theory of elephant trunks, is
proposed. Based on magnetized filaments, the model is capable of giving an
account of the various shapes of the mammoth trunks observed, including the
twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc
String order in spin liquid phases of spin ladders
Two-leg spin ladders have a rich phase diagram if rung, diagonal and
plaquette couplings are allowed for. Among the possible phases there are two
Haldane-type spin liquid phases without local order parameter, which differ,
however, in the topology of the short range valence bonds. We show that these
phases can be distinguished numerically by two different string order
parameters. We also point out that long range string- and dimer orders can
coexist
- …