763 research outputs found
Stress, coping, and depression: Testing a new hypothesis in a prospectively studied general population sample of U.S.-born Whites and Blacks
http://dx.doi.org/10.1016/j.socscimed.2010.12.00
Towards a novel carbon device for the treatment of sepsis
Sepsis is a systemic inflammatory response to infection in which the balance of pro- andanti-inflammatory mediators, which normally isolate and eliminate infection, is disrupted[1]. Gram negative sepsis is initiated by bacterial endotoxin release which activatesmacrophages and circulating monocytes to release TNF and IL-1β followed by IL-6 andother inflammatory cytokines [2]. As the disease progresses, an unregulatedinflammatory response results in, tissue injury, haematological dysfunction and organdysfunction. Severe sepsis, involving organ hypoperfusion may be further complicatedby hypotension that is unresponsive to adequate fluid replacement, resulting in septicshock and finally death [3].Despite improvements in anti-microbial and supportive therapies, sepsis remains asignificant cause of morbidity and mortality in ICUs worldwide [4]. The complexity ofprocesses mediating the progression of sepsis suggests that an extracorporeal devicecombining blood filtration with adsorption of a wide range of toxins, and inflammatorymediators offers the most comprehensive treatment strategy. However, no such deviceexists at present. A novel, uncoated, polymer pyrolysed synthetic carbon device isproposed which combines the superior adsorption properties of uncoated activatedcarbons with the capacity to manipulate porous structure for controlled adsorption oftarget plasma proteins and polypeptides [5]. Preliminary haemocompatibility andadsorptive capacity was assessed using a carbon matrix prototype
The Effect of Stochastic Noise on Quantum State Transfer
We consider the effect of classical stochastic noise on control laser pulses
used in a scheme for transferring quantum information between atoms, or quantum
dots, in separate optical cavities via an optical connection between cavities.
We develop a master equation for the dynamics of the system subject to
stochastic errors in the laser pulses, and use this to evaluate the sensitivity
of the transfer process to stochastic pulse shape errors for a number of
different pulse shapes. We show that under certain conditions, the sensitivity
of the transfer to the noise depends on the pulse shape, and develop a method
for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review
The WHAM Northern Sky Survey and the Nature of the Warm Ionized Medium in the Galaxy
The Wisconsin H-Alpha Mapper (WHAM) has completed a velocity-resolved map of
diffuse H-alpha emission of the entire northern sky, providing the first
comprehensive picture of both the distribution and kinematics of diffuse
ionized gas in the Galaxy. WHAM continues to advance our understanding of the
physical conditions of the warm ionized medium through observations of other
optical emission lines throughout the Galactic disk and halo. We discuss some
highlights from the survey, including an optical window into the inner Galaxy
and the relationship between HI and HII in the diffuse ISM.Comment: 9 pages, 3 figures. To be published in "How does the Galaxy work?",
eds. E.J. Alfaro, E. Perez & J. Franco, Kluwer, held 23-27 June 2003 in
Granada, Spain. Higher resolution version available at
http://www.astro.wisc.edu/~madsen/prof/pubs.htm
Magnetic and thermal properties of 4f-3d ladder-type molecular compounds
We report on the low-temperature magnetic susceptibilities and specific heats
of the isostructural spin-ladder molecular complexes L[M(opba)]_{3\cdot
xDMSOHO, hereafter abbreviated with LM (where L =
La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing
complexes (with the exception of LaCu) undergo long range magnetic
order at temperatures below 2 K, and that for GdCu this ordering is
ferromagnetic, whereas for TbCu and DyCu it is probably
antiferromagnetic. The susceptibilities and specific heats of TbCu
and DyCu above have been explained by means of a model
taking into account nearest as well as next-nearest neighbor magnetic
interactions. We show that the intraladder L--Cu interaction is the predominant
one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy
and Ho containing complexes, strong crystal field effects on the magnetic and
thermal properties have to be taken into account. The magnetic coupling between
the (ferromagnetic) ladders is found to be very weak and is probably of dipolar
origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
The HyperCP experiment (Fermilab E871) was designed to search for rare
phenomena in the decays of charged strange particles, in particular CP
violation in and hyperon decays with a sensitivity of
. Intense charged secondary beams were produced by 800 GeV/c protons
and momentum-selected by a magnetic channel. Decay products were detected in a
large-acceptance, high-rate magnetic spectrometer using multiwire proportional
chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection
system. Nearly identical acceptances and efficiencies for hyperons and
antihyperons decaying within an evacuated volume were achieved by reversing the
polarities of the channel and spectrometer magnets. A high-rate
data-acquisition system enabled 231 billion events to be recorded in twelve
months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX,
submitted to Nucl. Instrum. Meth.
Study of the Process e+ e- --> omega pi0 --> pi0 pi0 gamma in c.m. Energy Range 920--1380 MeV at CMD-2
The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has
been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector.
Its energy dependence is well described by the interference of the rho(770) and
rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of
the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.Comment: Accepted for publication in PL
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …