539 research outputs found

    Simulating `Complex' Problems with Quantum Monte Carlo

    Full text link
    We present a new quantum Monte Carlo algorithm suitable for generically complex problems, such as systems coupled to external magnetic fields or anyons in two spatial dimensions. We find that the choice of gauge plays a nontrivial role, and can be used to reduce statistical noise in the simulation. Furthermore, it is found that noise can be greatly reduced by approximate cancellations between the phases of the (gauge dependent) statistical flux and the external magnetic flux.Comment: Revtex, 11 pages. 3 postscript files for figures attache

    Boundaries, Cusps and Caustics in the Multimagnon Continua of 1D Quantum Spin Systems

    Full text link
    The multimagnon continua of 1D quantum spin systems possess several interesting singular features that may soon be accessible experimentally through inelastic neutron scattering. These include cusps and composition discontinuities in the boundary envelopes of two-magnon continuum states and discontinuities in the density of states, "caustics", on and within the continuum, which will appear as discontinuities in scattering intensity. In this note we discuss the general origins of these continuum features, and illustrate our results using the alternating Heisenberg antiferromagnetic chain and two-leg ladder as examples.Comment: 18 pages, 10 figure

    Low-cost locally manufacturable unilateral imperial external fixator for low- and middle-income countries

    Get PDF
    Treating open fractures in long bones can be challenging and if not performed properly can lead to poor outcomes such as mal/non-union, deformity, and amputation. One of the most common methods of treating these fracture types is temporary external fixation followed by definitive fixation. The shortage of high-quality affordable external fixators is a long-recognised need, particularly in Low- and Middle-Income Countries (LMICs). This research aimed to develop a low-cost device that can be manufactured locally to international standards. This can provide surge capacity for conflict zones or in response to unpredictable incidents and situations. The fixator presented here and developed by us, the Imperial external fixator, was tested on femur and tibia specimens under 100 cycles of 100 N compression-tension and the results were compared with those of the Stryker Hoffmann 3 frame. The Imperial device was stiffer than the Stryker Hoffmann 3 with a lower median interfragmentary motion (of 0.94 vs. 1.48 mm). The low-cost, easy to use, relatively lightweight, and easy to manufacture (since minimum skillset and basic workshop equipment and materials are needed) device can address a critical shortage and need in LMICs particularly in conflict-affected regions with unpredictable demand and supply. The device is currently being piloted in three countries for road traffic accidents, gunshot wounds and other conflict trauma—including blast cohorts

    Magnetic excitations in the stripe phase of high-T_c superconductors

    Full text link
    The magnetic excitations in the stripe phase of high-T_c superconductors are investigated in a model of spin ladders which are effectively coupled via charged stripes. Starting from the effective single-triplon model for the isolated spin ladder, the quasi-one-dimensional spin system can be described straightforwardly. Very good agreement is obtained with recent neutron scattering data on La_(15/8)Ba_(1/8)CuO_4 (no spin gap) and YBa_2Cu_3O_(6.6) (gapped). The signature of quasi-one-dimensional spin physics in a single-domain stripe phase is predicted.Comment: 3 pages, 3 figures included, submitted to the proceedings of JEMS 200

    DMRG Study of Critical Behavior of the Spin-1/2 Alternating Heisenberg Chain

    Full text link
    We investigate the critical behavior of the S=1/2 alternating Heisenberg chain using the density matrix renormalization group (DMRG). The ground-state energy per spin and singlet-triplet energy gap are determined for a range of alternations. Our results for the approach of the ground-state energy to the uniform chain limit are well described by a power law with exponent p=1.45. The singlet-triplet gap is also well described by a power law, with a critical exponent of p=0.73, half of the ground-state energy exponent. The renormalization group predictions of power laws with logarithmic corrections can also accurately describe our data provided that a surprisingly large scale parameter is present in the logarithm.Comment: 6 pages, 4 eps-figure

    Coexistence of double alternating antiferromagnetic chains in (VO)_2P_2O_7 : NMR study

    Full text link
    Nuclear magnetic resonance (NMR) of 31P and 51V nuclei has been measured in a spin-1/2 alternating-chain compound (VO)_2P_2O_7. By analyzing the temperature variation of the 31P NMR spectra, we have found that (VO)_2P_2O_7 has two independent spin components with different spin-gap energies. The spin gaps are determined from the temperature dependence of the shifts at 31P and 51V sites to be 35 K and 68 K, which are in excellent agreement with those observed in the recent inelastic neutron scattering experiments [A.W. Garrett et al., Phys. Rev. Lett. 79, 745 (1997)]. This suggests that (VO)_2P_2O_7 is composed of two magnetic subsystems showing distinct magnetic excitations, which are associated with the two crystallographically-inequivalent V chains running along the b axis. The difference of the spin-gap energies between the chains is attributed to the small differences in the V-V distances, which may result in the different exchange alternation in each magnetic chain. The exchange interactions in each alternating chain are estimated and are discussed based on the empirical relation between the exchange interaction and the interatomic distance.Comment: 10 pages, 11 embedded eps figures, REVTeX, Submitted to Phys. Rev.

    Lattice calculation of 1+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Thermodynamic Properties of the Dimerised and Frustrated S=1/2 Chain

    Full text link
    By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility χ(T)\chi(T) and the specific heat C(T)C(T) of dimerised and frustrated S=1/2S=1/2 chains are computed. All three methods yield reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of χ(T)\chi(T).Comment: 14 pages, 13 figures, 4 table

    A neutron scattering study of two-magnon states in the quantum magnet copper nitrate

    Full text link
    We report measurements of the two-magnon states in a dimerized antiferromagnetic chain material, copper nitrate (Cu(NO3)2*2.5D2O). Using inelastic neutron scattering we have measured the one and two magnon excitation spectra in a large single crystal. The data are in excellent agreement with a perturbative expansion of the alternating Heisenberg Hamiltonian from the strongly dimerized limit. The expansion predicts a two-magnon bound state for q ~ (2n+1)pi*d which is consistent with the neutron scattering data.Comment: 11 pages of revtex style with 6 figures include

    Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations

    Full text link
    The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-TcT_c superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for the charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure
    corecore