18 research outputs found

    Exchange Bias in Magnetic Topological Insulator Superlattices.

    Get PDF
    Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures

    Systematic Study of Ferromagnetism in CrxSb2-xTe3 Topological Insulator Thin Films using Electrical and Optical Techniques.

    Get PDF
    Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2-xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications

    Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and x-ray magnetic circular dichroism

    Get PDF
    We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 μB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 μB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene’s Dirac cone as a result of the strong C pz-Ni 3d hybridization

    Growth and Characterisation Studies of Eu3O4 Thin Films Grown on Si/SiO2 and Graphene.

    No full text
    We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu3O4, thin films grown on a Si/SiO2 substrate and Si/SiO2/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly textured crystalline Eu3O4(001) films are grown on both substrates, whereas the film deposited on graphene has a better crystallinity than that grown on the Si/SiO2 substrate. The SQUID measurements show that both films have a Curie temperature of ∼5.5±0.1 K, with a magnetic moment of ∼320 emu/cm3 at 2 K. The mixed valence of the Eu cations has been confirmed by the qualitative analysis of the depth-profile X-ray photoelectron spectroscopy measurements with the Eu2+:Eu3+ ratio of 28:72. However, surprisingly, our films show no metamagnetic behaviour as reported for the bulk and powder form. Furthermore, the microscopic optical images and Raman measurements show that the graphene underlayer remains largely intact after the growth of the Eu3O4 thin films

    Quantum advantage in postselected metrology

    Get PDF
    © 2020, The Author(s). In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool

    The Scanning TMR Microscope for Biosensor Applications.

    No full text
    We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterize the complex domain structures by displaying the real component, the amplitude and the phase of the sensor's impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques
    corecore