34 research outputs found

    Design and construction of modular genetic devices and the enzymatic hydrolysis of lignocellulosic biomass

    Get PDF
    The enzymatic deconstruction of lignocellulosic plant biomass is performed by specialist microbial species. It is a ubiquitous process within nature and central to the global recycling of carbon and energy. Lignocellulose is a complex heteropolymer, highly recalcitrant and resistant to hydrolysis due to the major polysaccharide cellulose existing as a crystalline lattice, intimately associated with a disordered sheath of hemicellulosic polysaccharides and lignin. In this thesis I aim to transfer the highly efficient cellulolytic mechanism of the bacterium Cellulomonas fimi, to that of a suitably amenable and genetically tractable expression host, in the hopes of better understanding the enzymatic hydrolysis of lignocellulose. Using tools and concepts from molecular biology and synthetic biology, I constructed a library of standardised genetic parts derived from C. fimi, each encoding a known enzymatic activity involved in the hydrolysis of cellulose, mannan or xylan; three of the major polysaccharides present in lignocellulose. Characterization assays were performed on individual parts to confirm enzymatic activity and compare efficiencies against a range of substrates. Results then informed the rational design and construction of parts into modular devices. The resultant genetic devices were introduced into the expression hosts Escherichia coli and Citrobacter freundii, and transformed strains were assayed for the ability to utilize various forms of xylan, mannan and cellulose as a sole carbon source. Results identified devices which when expressed by either host showed growth on the respective carbon sources. Notably, devices with improved activity against amorphous cellulose, crystalline cellulose, mannan and xylan were determined. Recombinant cellulase expressing strains of E. coli and C. freundii were shown capable of both deconstruction and utilization of pure cellulose paper as a sole carbon source. Moreover, this capacity was shown to be entirely unhindered when C. freundii strains were cultured in saline media. These findings show promise in developing C. freundii for bioprocessing of biomass in sea water, so as to reduce the use of fresh water resources and improve sustainability as well as process economics. Work presented in this thesis contributes towards understanding the complementarities and synergies of the enzymes responsible for lignocellulose hydrolysis. Moreover, the research emphasizes the merits of standardizing genetic parts used within metabolic engineering projects and how adopting such design principles can expedite the research process

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    The Tortoise and the hare: evolving regulatory landscapes for biosimilars

    No full text
    Challenges in demonstrating interchangeability and safety, as well as the ongoing evolution of regulations governing biosimilars, have meant that the development of the biosimilars industry has not been, and will not be, a carbon copy of the generics industry. Complexity in the development process reduces the cost advantages for biosimilars that generics offer over originators. There has been a marked difference in the number of biosimilars approved by the European Medicines Agency (EMA) and US FDA due to a lack of consensus and the different rates of progress in establishing both law and stable evidence-based regulatory guidelines for biosimilars. In this review, we provide a précis of the history and status of the regulatory regimes in the USA and Europe. Included is an assessment of market and nonmarket factors that may continue to influence the development of the biosimilars industry

    Extending teaching and learning initiatives in the cross-disciplinary field of biotechnology: final report

    No full text
    The purpose of this scoping study was to identify gaps and opportunities for biotechnology learning and teaching in Australia and to discover pathways to enhance the quality of the curriculum in biotechnology and biotechnology-related programs across the higher education sector. The investigation has shown that key factors affecting learning and teaching in biotechnology include growth; scientific and technical change; international competition in the biotechnology sector - in both industry and education; relationships between university programs and industry - including placement of students for vital industry experience and supporting a growing professional identity within the industry; the inherently interdisciplinary nature of biotechnology degree programs within discipline-based universities and scientific communities; pressures and opportunities within the university for improving teaching in areas such as graduate attribute development; and the challenges of founding and managing new, small, interdisciplinary programs within today's university bureaucracies. A particular project outcome was the establishment of a biotechnology education committee in collaboration with AusBiotech, the peak professional body in Australia, to be a vehicle for continuing to action the project's aims and findings
    corecore