5 research outputs found
Analysis of scalar perturbations in cosmological models with a non-local scalar field
We develop the cosmological perturbations formalism in models with a single
non-local scalar field originating from the string field theory description of
the rolling tachyon dynamics. We construct the equation for the energy density
perturbations of the non-local scalar field in the presence of the arbitrary
potential and formulate the local system of equations for perturbations in the
linearized model when both simple and double roots of the characteristic
equation are present. We carry out the general analysis related to the
curvature and entropy perturbations and consider the most specific example of
perturbations when important quantities in the model become complex.Comment: LaTeX, 25 pages, 1 figure, v2: Subsection 3.2 and Section 5 added,
references added, accepted for publication in Class. Quant. Grav. arXiv admin
note: text overlap with arXiv:0903.517
Large Nongaussianity from Nonlocal Inflation
We study the possibility of obtaining large nongaussian signatures in the
Cosmic Microwave Background in a general class of single-field nonlocal
hill-top inflation models. We estimate the nonlinearity parameter f_{NL} which
characterizes nongaussianity in such models and show that large nongaussianity
is possible. For the recently proposed p-adic inflation model we find that
f_{NL} ~ 120 when the string coupling is order unity. We show that large
nongaussianity is also possible in a toy model with an action similar to those
which arise in string field theory.Comment: 27 pages, no figures. Added references and some clarifying remark
Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric
A general class of cosmological models driven by a nonlocal scalar field
inspired by the string field theory is studied. Using the fact that the
considering linear nonlocal model is equivalent to an infinite number of local
models we have found an exact special solution of the nonlocal Friedmann
equations. This solution describes a monotonically increasing Universe with the
phantom dark energy.Comment: 18 pages, 3 figures, a few misprints in Section 5 have been correcte
Predictions for Nongaussianity from Nonlocal Inflation
In our previous work the nonlinearity parameter f_NL, which characterizes
nongaussianity in the cosmic microwave background, was estimated for a class of
inflationary models based on nonlocal field theory. These models include p-adic
inflation and generically have the remarkable property that slow roll inflation
can proceed even with an extremely steep potential. Previous calculations found
that large nongaussianity is possible; however, the technical complications
associated with studying perturbations in theories with infinitely many
derivatives forced us to provide only an order of magnitude estimate for f_NL.
We reconsider the problem of computing f_NL in nonlocal inflation models,
showing that a particular choice of field basis and recent progress in
cosmological perturbation theory makes an exact computation possible. We
provide the first quantitatively accurate computation of the bispectrum in
nonlocal inflation, confirming our previous claim that it can be observably
large. We show that the shape of the bispectrum in this class of models makes
it observationally distinguishable from Dirac-Born-Infeld inflation models.Comment: 26 pages, 5 figures; references added, sign convention for f_NL
clarified, minor correction