382 research outputs found

    Standard Cosmology Delayed

    Full text link
    The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.Comment: 12 pages, 3 figures, Revised with more elaborate discussions. Accepted for publication in JCA

    Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity

    Full text link
    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c \phi F \tilde{F}. In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the "vacuum" perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure

    Primordial black holes from cosmic necklaces

    Full text link
    Cosmic necklaces are hybrid topological defects consisting of monopoles and strings. We argue that primordial black holes(PBHs) may have formed from loops of the necklaces, if there exist stable winding states, such as coils and cycloops. Unlike the standard scenario of PBH formation from string loops, in which the kinetic energy plays important role when strings collapse into black holes, the PBH formation may occur in our scenario after necklaces have dissipated their kinetic energy. Then, the significant difference appears in the production ratio. In the standard scenario, the production ratio ff becomes a tiny fraction f1020f\sim 10^{-20}, however it becomes f1f \sim 1 in our case. On the other hand, the typical mass of the PBHs is much smaller than the standard scenario, if they are produced in the same epoch. As the two mechanisms may work at the same time, the necklaces may have more than one channel of the gravitational collapse. Although the result obtained in this paper depends on the evolution of the dimensionless parameter rr, the existence of the winding state could be a serious problem in some cases. Since the existence of the winding state in brane models is due to the existence of a non-tivial circle in the compactified space, the PBH formation can be used to probe the structure of the compactified space. Black holes produced by this mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for publication in JHE

    Higher derivative theories with constraints : Exorcising Ostrogradski's Ghost

    Full text link
    We prove that the linear instability in a non-degenerate higher derivative theory, the Ostrogradski instability, can only be removed by the addition of constraints if the original theory's phase space is reduced.Comment: 17 pages, no figures, version published in JCA

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2

    Dark matter production from cosmic necklaces

    Full text link
    Cosmic strings have gained a great interest, since they are formed in a large class of brane inflationary models. The most interesting story is that cosmic strings in brane models are distinguished in future cosmological observations. If the strings in brane models are branes or superstrings that can move along compactified space, and also if there are degenerated vacua along the compactified space, kinks interpolate between degenerated vacua become ``beads'' on the strings. In this case, strings turn into necklaces. In the case that the compact manifold in not simply connected, a string loop that winds around a nontrivial circle is stable due to the topological reason. Since the existence of the (quasi-)degenerated vacua and the nontrivial circle is a common feature of the brane models, it is important to study cosmological constraints on the cosmic necklaces and the stable winding states. In this paper, we consider dark matter production from loops of the cosmic necklaces. Our result suggests that necklaces can put stringent bound on certain kinds of brane models.Comment: 27 pages, 5 figures, added many comments and 3 figures, accepted for publication in JCA

    Generating the curvature perturbation with instant preheating

    Get PDF
    A new mechanism for generating the curvature perturbation at the end of inflaton has been investigated. The dominant contribution to the primordial curvature perturbation may be generated during the period of instant preheating. The mechanism converts isocurvature perturbation related to a light field into curvature perturbation, where the ``light field'' is not the inflaton field. This mechanism is important in inflationary models where kinetic energy is significant at the end of inflaton. We show how one can apply this mechanism to various brane inflationary models.Comment: 17 pages, 1 figure, To appear in JCA

    Analysis of scalar perturbations in cosmological models with a non-local scalar field

    Get PDF
    We develop the cosmological perturbations formalism in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field in the presence of the arbitrary potential and formulate the local system of equations for perturbations in the linearized model when both simple and double roots of the characteristic equation are present. We carry out the general analysis related to the curvature and entropy perturbations and consider the most specific example of perturbations when important quantities in the model become complex.Comment: LaTeX, 25 pages, 1 figure, v2: Subsection 3.2 and Section 5 added, references added, accepted for publication in Class. Quant. Grav. arXiv admin note: text overlap with arXiv:0903.517

    Cosmology of the Lifshitz universe

    Full text link
    We study the ultraviolet complete non-relativistic theory recently proposed by Horava. After introducing a Lifshitz scalar for a general background, we analyze the cosmology of the model in Lorentzian and Euclidean signature. Vacuum solutions are found and it is argued the existence of non-singular bouncing profiles. We find a general qualitative agreement with both the picture of Causal Dynamical Triangulations and Quantum Einstein Gravity. However, inflation driven by a Lifshitz scalar field on a classical background might not produce a scale-invariant spectrum when the principle of detailed balance is assumed.Comment: 23 pages. v2: one reference and one equation added, main conclusions unchanged; v3: matches published version, discussion improved, typos correcte

    Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions

    Full text link
    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function F()F(\Box), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.Comment: 20 pages, 3 figures, published in the proceedings of the VIII International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, Russia, July 29 - August 3, 2009, http://theor.jinr.ru/~sqs09
    corecore