3,030 research outputs found
A conceptual analytics model for an outcome-driven quality management framework as part of professional healthcare education
BACKGROUND: Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. OBJECTIVE: The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. METHODS: A deductive case study approach was applied to develop the conceptual model. RESULTS: The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. CONCLUSIONS: The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach
Recommended from our members
Assessing Feeding Damage from Two Leaffooted Bugs, Leptoglossus clypealis Heidemann and Leptoglossus zonatus (Dallas) (Hemiptera: Coreidae), on Four Almond Varieties.
Leaffooted bugs (Leptoglossus spp; Hemiptera: Coreidae) are phytophagous insects native to the Western Hemisphere. In California, Leptoglossus clypealis and Leptoglossus zonatus are occasional pests on almonds. Early season feeding by L. clypealis and L. zonatus leads to almond drop, while late season feeding results in strikes on kernels, kernel necrosis, and shriveled kernels. A field cage study was conducted to assess feeding damage associated with L. clypealis and L. zonatus on four almond varieties, Nonpareil, Fritz, Monterey, and Carmel. The objectives were to determine whether leaffooted bugs caused significant almond drop, to pinpoint when the almond was vulnerable, and to determine the final damage at harvest. Branches with ~20 almonds were caged and used to compare almond drop and final damage in four treatments: (1) control branches, (2) mechanically punctured almonds, (3) adult Leptoglossus clypealis, and (4) adult Leptoglossus zonatus. Replicates were set up for eight weeks during two seasons. Early season feeding resulted in higher almond drop than late season, and L. zonatus resulted in greater drop than L. clypealis. The almond hull width of the four varieties in the study did not influence susceptibility to feeding damage. The final damage assessment at harvest found significant levels of kernel strikes, kernel necrosis, and shriveled almonds in bug feeding cages, with higher levels attributed to L. zonatus than L. clypealis. Further research is warranted to develop an Integrated Pest Management program with reduced risk controls for L. zonatus
Phase-Dependent Properties of Extrasolar Planet Atmospheres
Recently the Spitzer Space Telescope observed the transiting extrasolar
planets, TrES-1 and HD209458b. These observations have provided the first
estimates of the day side thermal flux from two extrasolar planets orbiting
Sun-like stars. In this paper, synthetic spectra from atmospheric models are
compared to these observations. The day-night temperature difference is
explored and phase-dependent flux densities are predicted for both planets. For
HD209458b and TrES-1, models with significant day-to-night energy
redistribution are required to reproduce the observations. However, the
observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical
Journa
HAZMAT VI: The Evolution of Extreme Ultraviolet Radiation Emitted from Early M Star
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000
) emission is critical for assessing the evolution of
planetary atmospheres and the habitability of M dwarf systems. Previous studies
from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program
showed the far- and near-UV (FUV, NUV) emission from M stars at various stages
of a stellar lifetime through photometric measurements from the Galaxy
Evolution Explorer (GALEX). The results revealed increased levels of
short-wavelength emission that remain elevated for hundreds of millions of
years. The trend for EUV flux as a function of age could not be determined
empirically because absorption by the interstellar medium prevents access to
the EUV wavelengths for the vast majority of stars. In this paper, we model the
evolution of EUV flux from early M stars to address this observational gap. We
present synthetic spectra spanning EUV to infrared wavelengths of 0.4
0.05 M stars at five distinct ages between 10 and 5000 Myr, computed
with the PHOENIX atmosphere code and guided by the GALEX photometry. We model a
range of EUV fluxes spanning two orders of magnitude, consistent with the
observed spread in X-ray, FUV, and NUV flux at each epoch. Our results show
that the stellar EUV emission from young M stars is 100 times stronger than
field age M stars, and decreases as t after remaining constant for a few
hundred million years. This decline stems from changes in the chromospheric
temperature structure, which steadily shifts outward with time. Our models
reconstruct the full spectrally and temporally resolved history of an M star's
UV radiation, including the unobservable EUV radiation, which drives planetary
atmospheric escape, directly impacting a planet's potential for habitability.Comment: 23 pages, 15 figures, accepted to Ap
Magnetoresistance behavior of a ferromagnetic shape memory alloy: Ni_1.75Mn_1.25Ga
A negative-positive-negative switching behavior of magnetoresistance (MR)
with temperature is observed in a ferromagnetic shape memory alloy
Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative
due to s-d scattering. Curiously, below 120K MR is positive, while at still
lower temperatures in the martensitic phase, MR is negative again. The positive
MR cannot be explained by Lorentz contribution and is related to a magnetic
transition. Evidence for this is obtained from ab initio density functional
theory, a decrease in magnetization and resistivity upturn at 120 K. Theory
shows that a ferrimagnetic state with anti-ferromagnetic alignment between the
local magnetic moments of the Mn atoms is the energetically favoured ground
state. In the martensitic phase, there are two competing factors that govern
the MR behavior: a dominant negative trend up to the saturation field due to
the decrease of electron scattering at twin and domain boundaries; and a weaker
positive trend due to the ferrimagnetic nature of the magnetic state. MR
exhibits a hysteresis between heating and cooling that is related to the first
order nature of the martensitic phase transition.Comment: 17 pages, 5 figures. Accepted in Phys. Rev.
Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics
We present the discovery of 2MASS J21321145+1341584AB as a closely separated
(0.066") very low-mass field dwarf binary resolved in the near-infrared by the
Keck II Telescope using laser guide star adaptive optics. Physical association
is deduced from the angular proximity of the components and constraints on
their common proper motion. We have obtained a near-infrared spectrum of the
binary and find that it is best described by an L5+/-0.5 primary and an
L7.5+/-0.5 secondary. Model-dependent masses predict that the two components
straddle the hydrogen burning limit threshold with the primary likely stellar
and the secondary likely substellar. The properties of this sytem - close
projected separation (1.8+/-0.3 AU) and near unity mass ratio - are consistent
with previous results for very low-mass field binaries. The relatively short
estimated orbital period of this system (~7-12 yr) makes it a good target for
dynamical mass measurements. Interestingly, the system's angular separation is
the tightest yet for any very low-mass binary published from a ground-based
telescope and is the tightest binary discovered with laser guide star adaptive
optics to date.Comment: 10 pages, 3 figures; accepted for publication to A
Mature Larvae of Hydroporus signatus Sharp (Coleoptera: Dytiscidae) as Substrates for Peritrichida
Mature larvae of Hydroporus signatus Sharp collected from a small eutrophic habitat served as substrates for Peritrichida (Ciliophora). The rate of infestation was 60% and there were indications of body site specificity for the colonies with most found attached to the craÂnium and/or mouthparts
- …