190 research outputs found

    MHD turbulence in a channel with spanwise magnetic field

    Full text link
    The effect of a uniform spanwise magnetic field on a turbulent channel flow is investigated for the case of low magnetic Reynolds number. DNS and LES computations are performed for two values of the hydrodynamic Reynolds number (10^4 and 2\times 10^4) and the Hartmann number varying in a wide range. It is shown that the main effect of the magnetic field is the suppression of turbulent velocity fluctuations and momentum transfer in the wall-normal direction. This leads to drag reduction and transformation of the mean flow profile. The centerline velocity grows, the mean velocity gradients near the wall decrease, and the typical horizontal dimensions of the coherent structures enlarge upon increasing the Hartmann number. Comparison between LES and DNS results shows that the dynamic Smagorinsky model accurately reproduces the flow transformation.Comment: 27 pages, 14 Postscript figures, to appear in Phys. Fluid

    Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: relationships with post-operative complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma concentrations of sFlt-1, the soluble form of the vascular endothelial growth factor receptor (VEGF), markedly increase during coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC). We investigated if plasma sFlt-1 values might be related to the occurrence of surgical complications after CABG.</p> <p>Methods</p> <p>Plasma samples were collected from the radial artery catheter before vascular cannulation and after opening the chest, at the end of ECC just before clamp release, after cross release, after weaning from ECC, at the 6<sup>th </sup>and 24<sup>th </sup>post-operative hour. Thirty one patients were investigated. The presence of cardiovascular, haematological and respiratory dysfunctions was prospectively assessed. Plasma sFlt-1 levels were measured with commercially ELISA kits.</p> <p>Results</p> <p>Among the 31 investigated patients, 15 had uneventful surgery. Patients with and without complications had similar pre-operative plasma sFlt-1 levels. Lowered plasma sFlt-1 levels were observed at the end of ECC in patients with haematological (p = 0.001, ANOVA) or cardiovascular (p = 0.006) impairments, but not with respiratory ones (p = 0.053), as compared to patients with uneventful surgery.</p> <p>Conclusion</p> <p>These results identify an association between specific post-CABG complication and the lower release of sFlt-1 during ECC. sFlt-1-induced VEGF neutralisation might, thus, be beneficial to reduce the development of post-operative adverse effects after CABG.</p

    Real-time analysis of the binding of fluorescent VEGF₁₆₅a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes

    Get PDF
    Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF₁₆₅a-TMR) labeled on a single cysteine within each protomer of the antiparallel VEGF homodimer. VEGF₁₆₅a-TMR has then been used in conjunction with full length VEGFR2, tagged with the bioluminescent protein NanoLuc, to undertake a real time quantitative evaluation of VEGFR2 binding characteristics in living cells using bioluminescence resonance energy transfer (BRET). This provided quantitative information on VEGF-VEGFR2 interactions. At longer incubation times, VEGFR2 is internalized by VEGF₁₆₅a-TMR into intracellular endosomes. This internalization can be prevented by the receptor tyrosine kinase inhibitors (RTKIs) cediranib, sorafenib, pazopanib or vandetanib. In the absence of RTKIs, the BRET signal is decreased over time as a consequence of the dissociation of agonist from the receptor in intracellular endosomes and recycling of VEGFR2 back to the plasma membrane

    Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro

    Get PDF
    BACKGROUND: Endostatin is a C-terminal fragment of collagen XVIII which is a component of basement membranes with the structural properties of both collagens and proteoglycans. Endostatin has a major role in angiogenesis which is intimately associated with bone development and remodeling. Signaling between the endothelial cells and the bone cells, for example, may have a role in recruitment of osteoclastic precursor cells. Our study aims at exploring a possibility that endostatin, either as a part of basement membrane or as a soluble molecule, may control osteoclastogenesis and osteoclastic bone resorption in vitro. METHODS: Rat pit formation assay was employed in order to examine the effect of endostatin alone or in combination with vascular endothelial growth factor-A (VEGF-A) on bone resorption in vitro. Effect of these agents on osteoclast differentiation in vitro was also tested. Osteoclastogenesis and the number of osteoclasts were followed by tartrate resistant acid phosphatase (TRACP) staining and resorption was evaluated by measuring the area of excavated pits. RESULTS: Endostatin inhibited the VEGF-A stimulated osteoclastic bone resorption, whereas endostatin alone had no effect on the basal resorption level in the absence of VEGF-A. In addition, endostatin could inhibit osteoclast differentiation in vitro independent of VEGF-A. CONCLUSION: Our in vitro data indicate that collagen XVIII/endostatin can suppress VEGF-A induced osteoclastic bone resorption to the basal level. Osteoclastogenesis is also inhibited by endostatin. The regulatory effect of endostatin, however, is not critical since endostatin alone does not modify the basal bone resorption

    Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer

    Get PDF
    Vascular endothelial growth factor (VEGF) receptors consist of three cell-membrane type receptors (VEGFR-1, VEGFR-2 and VEGFR-3), and soluble form of VEGFR-1 (sVEGFR-1), an intrinsic negative counterpart of the VEGF. In this study, we measured intratumoral protein levels of free and total VEGF, VEGFR-2 and sVEGFR-1 from 202 primary breast cancer tissues and examined their prognostic values. A significant inverse correlation was found between free or total VEGF and oestrogen receptor (ER) status (P=0.042 and 0.032, respectively). A univariate analysis showed that low sVEGFR-1 and high total VEGF were significantly associated with poor prognosis in disease-free survival (DFS) and overall survival (OS). The ratio of sVEGFR-1 to total VEGF was a strong prognostic indicator (DFS: P=0.008; OS: P=0.0002). A multivariate analysis confirmed the independent prognostic values of total VEGF and the ratio of sVEGFR-1 to total VEGF. In subgroup analysis, total VEGF was a significant prognostic indicator for ER-positive tumours but not for ER-negative tumours, whereas sVEGFR-1 was significant for ER-negative tumours but not for ER-positive tumours. In conclusion, the intratumoral sVEGFR-1 level, VEGF level and the ratio of sVEGFR-1 to total VEGF are potent prognostic indicators of primary breast cancer, and might be relevant to ER status

    Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone

    Get PDF
    Vascular endothelial growth factor (VEGF) is a proangiogenic cytokine that is expressed highly in many solid tumours often correlating with a poor prognosis. In this study, we investigated the expression of VEGF and its receptors in bone metastases from primary human breast tumours and further characterised its effects on osteoclasts in vitro. Breast cancer metastases to bone were immunohistochemically stained for VEGF, its receptors VEGFR1 and 2 (vascular endothelial growth factor receptor 1 and 2), demonstrating that breast cancer metastases express VEGF strongly and that surrounding osteoclasts express both VEGFR1 and VEGFR2. RAW 264.7 cells (mouse monocyte cell line) and human peripheral blood mononuclear cells (PBMCs) were cultured with VEGF, RANKL and M-CSF. VEGF and RANKL together induced differentiation of multinucleated, tartrate-resistant acid phophatase (TRAP)-positive cells in similar numbers to M-CSF and RANKL. The PBMCs were also able to significantly stimulate resorption of mineralised matrix after treatment with M-CSF with RANKL and VEGF with RANKL. We have shown that VEGF in the presence of RANKL supports PBMC differentiation into osteoclast-like cells, able to resorb substrate. Vascular endothelial growth factor may therefore play a role in physiological bone resorption and in pathological situations. Consequently, VEGF signalling may be a therapeutic target for osteoclast inhibition in conditions such as tumour osteolysis

    Hypoxia Potentiates Glioma-Mediated Immunosuppression

    Get PDF
    Glioblastoma multiforme (GBM) is a lethal cancer that exerts potent immune suppression. Hypoxia is a predominant feature of GBM, but it is unclear to the degree in which tumor hypoxia contributes to this tumor-mediated immunosuppression. Utilizing GBM associated cancer stem cells (gCSCs) as a treatment resistant population that has been shown to inhibit both innate and adaptive immune responses, we compared immunosuppressive properties under both normoxic and hypoxic conditions. Functional immunosuppression was characterized based on production of immunosuppressive cytokines and chemokines, the inhibition of T cell proliferation and effector responses, induction of FoxP3+ regulatory T cells, effect on macrophage phagocytosis, and skewing to the immunosuppressive M2 phenotype. We found that hypoxia potentiated the gCSC-mediated inhibition of T cell proliferation and activation and especially the induction of FoxP3+T cells, and further inhibited macrophage phagocytosis compared to normoxia condition. These immunosuppressive hypoxic effects were mediated by signal transducer and activator of transcription 3 (STAT3) and its transcriptionally regulated products such as hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Inhibitors of STAT3 and HIF-1α down modulated the gCSCs' hypoxia-induced immunosuppressive effects. Thus, hypoxia further enhances GBM-mediated immunosuppression, which can be reversed with therapeutic inhibition of STAT3 and HIF-1α and also helps to reconcile the disparate findings that immune therapeutic approaches can be used successfully in model systems but have yet to achieve generalized successful responses in the vast majority of GBM patients by demonstrating the importance of the tumor hypoxic environment
    corecore