623 research outputs found

    Charge and Spin Reconstruction in Quantum Hall Strips

    Full text link
    We study the effect of electron-electron interactions on the charge and spin structures of a Quantum Hall strip in a triangularly confined potential. We find that the strip undergoes a spin-unpolarized to spin-polarized transition as a function of magnetic field perpendicular to the strip. For sharp confinements the spin-polarization transition is spontaneous and first develops at the softer side of the triangular potential which shows up as an "eye-structure" in the electron dispersion. For sufficiently weak confinements this spin-polarization transition is preceded by a charge reconstruction of a single spin species, which creates a spin-polarized strip of electrons with a width of the order of the magnetic length detached from the rest of the system. Relevance of our findings to the recent momentum resolved tunneling experiments is also discussed.Comment: 4+ page

    Stability of the k=3 Read-Rezayi state in chiral two-dimensional systems with tunable interactions

    Full text link
    The k=3 Read-Rezayi (RR) parafermion quantum Hall state hosts non-Abelian excitations which provide a platform for the universal topological quantum computation. Although the RR state may be realized at the filling factor \nu=12/5 in GaAs-based two-dimensional electron systems, the corresponding quantum Hall state is weak and at present nearly impossible to study experimentally. Here we argue that the RR state can alternatively be realized in a class of chiral materials with massless and massive Dirac-like band structure. This family of materials encompasses monolayer and bilayer graphene, as well as topological insulators. We show that, compared to GaAs, these systems provide several important advantages in realizing and studying the RR state. Most importantly, the effective interactions can be tuned {\it in situ} by varying the external magnetic field, and by designing the dielectric environment of the sample. This tunability enables the realization of RR state with controllable energy gaps in different Landau levels. It also allows one to probe the quantum phase transitions to other compressible and incompressible phases.Comment: 12 pages, 5 figures; to appear in New Journal of Physics, Focus on Topological Quantum Computatio

    Numerical studies of the fractional quantum Hall effect in systems with tunable interactions

    Full text link
    The discovery of the fractional quantum Hall effect in GaAs-based semiconductor devices has lead to new advances in condensed matter physics, in particular the possibility for exotic, topological phases of matter that possess fractional, and even non-Abelian, statistics of quasiparticles. One of the main limitations of the experimental systems based on GaAs has been the lack of tunability of the effective interactions between two-dimensional electrons, which made it difficult to stabilize some of the more fragile states, or induce phase transitions in a controlled manner. Here we review the recent studies that have explored the effects of tunability of the interactions offered by alternative two-dimensional systems, characterized by non-trivial Berry phases and including graphene, bilayer graphene and topological insulators. The tunability in these systems is achieved via external fields that change the mass gap, or by screening via dielectric plate in the vicinity of the device. Our study points to a number of different ways to manipulate the effective interactions, and engineer phase transitions between quantum Hall liquids and compressible states in a controlled manner.Comment: 9 pages, 4 figures, updated references; review for the CCP2011 conference, to appear in "Journal of Physics: Conference Series

    Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems

    Full text link
    In this article we review the quantum Hall physics of graphene based two-dimensional electron systems, with a special focus on recent experimental and theoretical developments. We explain why graphene and bilayer graphene can be viewed respectively as J=1 and J=2 chiral two-dimensional electron gases (C2DEGs), and why this property frames their quantum Hall physics. The current status of experimental and theoretical work on the role of electron-electron interactions is reviewed at length with an emphasis on unresolved issues in the field, including assessing the role of disorder in current experimental results. Special attention is given to the interesting low magnetic field limit and to the relationship between quantum Hall effects and the spontaneous anomalous Hall effects that might occur in bilayer graphene systems in the absence of a magnetic field

    Energy gaps at neutrality point in bilayer graphene in a magnetic field

    Full text link
    Utilizing the Baym-Kadanoff formalism with the polarization function calculated in the random phase approximation, the dynamics of the ν=0\nu=0 quantum Hall state in bilayer graphene is analyzed. Two phases with nonzero energy gap, the ferromagnetic and layer asymmetric ones, are found. The phase diagram in the plane (Δ~0,B)(\tilde{\Delta}_0,B), where Δ~0\tilde{\Delta}_0 is a top-bottom gates voltage imbalance, is described. It is shown that the energy gap scales linearly, $\Delta E\sim 14 B[T]K, with magnetic field.Comment: 5 pages, 3 figures, title changed, references added, JETP Letters versio

    Tunable interactions and phase transitions in Dirac materials in a magnetic field

    Full text link
    A partially filled Landau level (LL) hosts a variety of correlated states of matter with unique properties. The ability to control these phases requires tuning the effective electron interactions within a LL, which has been difficult to achieve in GaAs-based structures. Here we consider a class of Dirac materials in which the chiral band structure, along with the mass term, gives rise to a wide tunability of the effective interactions by the magnetic field. This tunability is such that different phases can occur in a single LL, and phase transitions between them can be driven in situ. The incompressible, Abelian and non-Abelian, liquids are stabilized in interaction regimes different from GaAs. Our study points to a realistic method of controlling the correlated phases and studying the phase transitions between them in materials such as graphene, bilayer graphene, and topological insulators.Comment: 4 pages, 3 figures; supersedes earlier versio
    • …
    corecore