68 research outputs found

    Development of selection indices for improvement of seed yield and lipid composition in bambara groundnut (Vigna subterranea (l.) verdc.)

    Get PDF
    The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded by (1) lack of systematic data describing variation in nutritional composition within the gene pool, and (2) a poor understanding of how concentrations of different nutritional components interact. In this study, we analysed seed lipid and protein concentration and lipid composition within a collection of 100 lines representing the global gene pool. Seed protein and lipid varied over twofold with a normal distribution, but no significant statistical correlation was detected between the two components. Seed lipid concentration (4.2–8.8 g/100 g) is primarily determined by the proportion of oleic acid (r2 = 0.45). Yield and composition data for a subset of 40 lines were then used to test selection parameters for high yielding, high lipid breeding lines. From five selection indices tested using 15 scenarios, an index based on the seed number, seed weight, and oleic acid yielded a >50% expected increase in each of the mean values of seed number, pod dry weight, seed dry weight, and seed size, as well as an expected 7% increase in seed lipid concentration

    Plasma membrane and abiotic stress

    No full text

    Physiology of ion transport across the tonoplast of higher plants

    No full text
    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell

    Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Get PDF
    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells
    corecore