4,809 research outputs found
Recommended from our members
Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development
Fluid/solid transition in a hard-core system
We prove that a system of particles in the plane, interacting only with a
certain hard-core constraint, undergoes a fluid/solid phase transition
Thalamotemporal impairment in temporal lobe epilepsy: A combined MRI analysis of structure, integrity and connectivity
Objective Thalamic abnormality in temporal lobe epilepsy (TLE ) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI ) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE . Methods For 23 patients with TLE and 23 healthy controls, we performed T 1‐weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T 1 and T 2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity‐based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T 1 and T 2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. Results As expected, patients had significant volume reduction and increased T 2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T 2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T 2 were significantly correlated with volume and T 2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. Significance These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE
Dynamics of levitated nanospheres: towards the strong coupling regime
The use of levitated nanospheres represents a new paradigm for the
optomechanical cooling of a small mechanical oscillator, with the prospect of
realising quantum oscillators with unprecedentedly high quality factors. We
investigate the dynamics of this system, especially in the so-called
self-trapping regimes, where one or more optical fields simultaneously trap and
cool the mechanical oscillator. The determining characteristic of this regime
is that both the mechanical frequency and single-photon
optomechanical coupling strength parameters are a function of the optical
field intensities, in contrast to usual set-ups where and are
constant for the given system. We also measure the characteristic transverse
and axial trapping frequencies of different sized silica nanospheres in a
simple optical standing wave potential, for spheres of radii \,nm,
illustrating a protocol for loading single nanospheres into a standing wave
optical trap that would be formed by an optical cavity. We use this data to
confirm the dependence of the effective optomechanical coupling strength on
sphere radius for levitated nanospheres in an optical cavity and discuss the
prospects for reaching regimes of strong light-matter coupling. Theoretical
semiclassical and quantum displacement noise spectra show that for larger
nanospheres with \,nm a range of interesting and novel dynamical
regimes can be accessed. These include simultaneous hybridization of the two
optical modes with the mechanical modes and parameter regimes where the system
is bistable. We show that here, in contrast to typical single-optical mode
optomechanical systems, bistabilities are independent of intracavity intensity
and can occur for very weak laser driving amplitudes
Systematic screening of 96 Schistosoma mansoni cell-surface and secreted antigens does not identify any strongly protective vaccine candidates in a mouse model of infection.
Background: Schistosomiasis is a major parasitic disease affecting people living in tropical and sup-tropical areas. Transmission of the parasite has been reported in 78 countries, causing significant morbidity and around 200,000 deaths per year in endemic regions. The disease is currently managed by the mass-administration of praziquantel to populations at risk of infection; however, the reliance on a single drug raises the prospect of parasite resistance to the only treatment widely available. The development of an effective vaccine would be a more powerful method of control, but none currently exists and the identification of new immunogens that can elicit protective immune responses therefore remains a priority. Because of the complex nature of the parasite life cycle, identification of new vaccine candidates has mostly relied on the use of animal models and on a limited set of recombinant proteins. Methods: In this study, we have established an infrastructure for testing a large number of vaccine candidates in mice and used it to screen 96 cell-surface and secreted recombinant proteins from Schistosoma mansoni. This approach, using standardised immunisation and percutaneous infection protocols, allowed us to compare an extensive set of antigens in a systematic manner. Results: Although some vaccine candidates were associated with a statistically significant reduction in the number of eggs in the initial screens, these observations could not be repeated in subsequent challenges and none of the proteins studied were associated with a strongly protective effect against infection. Conclusions: Although no antigens individually induced reproducible and strongly protective effects using our vaccination regime, we have established the experimental infrastructures to facilitate large-scale systematic subunit vaccine testing for schistosomiasis in a murine infection model. Copyright: © 2019 Crosnier C et al
Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension
BACKGROUND: Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes.
METHODS AND RESULTS: We measured levels of serum cytokines (tumor necrosis factor-alpha, interferon-gamma and interleukin-1beta, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1beta, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-alpha compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels < or = 9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics.
CONCLUSIONS: This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH
Recommended from our members
Large sulfur isotope fractionation by bacterial sulfide oxidation.
A sulfide-oxidizing microorganism, Desulfurivibrio alkaliphilus (DA), generates a consistent enrichment of sulfur-34 (34 S) in the produced sulfate of +12.5 per mil or greater. This observation challenges the general consensus that the microbial oxidation of sulfide does not result in large 34 S enrichments and suggests that sedimentary sulfides and sulfates may be influenced by metabolic activity associated with sulfide oxidation. Since the DA-type sulfide oxidation pathway is ubiquitous in sediments, in the modern environment, and throughout Earth history, the enrichments and depletions in 34 S in sediments may be the combined result of three microbial metabolisms: microbial sulfate reduction, the disproportionation of external sulfur intermediates, and microbial sulfide oxidation
An experiment to assess the effects of diatom dissolution on oxygen isotope ratios
Rationale: Current studies which use the oxygen isotope composition from diatom silica (δ18Odiatom) as a palaeoclimate proxy assume that the δ18Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ18Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated.
Methods: Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ18O values using step-wise fluorination and isotope ratio mass spectrometry.
Results: Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ18Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰).
Conclusions: We have shown that dissolution can have a small negative impact on δ18Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ18Odiatom values, especially when interpreting variations in these values of <1‰
- …