250 research outputs found
ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer
Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest
mm/submm interferometer, and currently the Early Science is ongoing, together
with the commissioning and science verification (CSV). Here we present a study
of the temporal phase stability of the entire ALMA system from antennas to the
correlator. We verified the temporal phase stability of ALMA using data, taken
during the last two years of CSV activities. The data consist of integrations
on strong point sources (i.e., bright quasars) at various frequency bands, and
at various baseline lengths (up to 600 m). From the observations of strong
quasars for a long time (from a few tens of minutes, up to an hour), we derived
the 2-point Allan Standard Deviation after the atmospheric phase correction
using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna,
and confirmed that the phase stability of all the baselines reached the ALMA
specification. Since we applied the WVR phase correction to all the data
mentioned above, we also studied the effectiveness of the WVR phase correction
at various frequencies, baseline lengths, and weather conditions. The phase
stability often improves a factor of 2 - 3 after the correction, and sometimes
a factor of 7 improvement can be obtained. However, the corrected data still
displays an increasing phase fluctuation as a function of baseline length,
suggesting that the dry component (e.g., N2 and O2) in the atmosphere also
contributes the phase fluctuation in the data, although the imperfection of the
WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table
New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
We update the limit from the 90 GHz PIQUE ground-based polarimeter on the
magnitude of any polarized anisotropy of the cosmic microwave radiation. With a
second year of data, we have now limited both Q and U on a ring of 1 degree
radius. The window functions are broad: for E-mode polarization, the effective
l is = 191 +143 -132. We find that the E-mode signal can be no greater than
8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible
B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on
the magnitude of any polarized anisotropy in the cosmic microwave background.
The combination of the scan strategy and full width half maximum beam of 0.235
degrees gives broad window functions with average multipoles, l = 211+294-146
and l = 212+229-135 for the E- and B-mode window functions, respectively. A
joint likelihood analysis yields simultaneous 95% confidence level flat band
power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode
angular power spectra, respectively. Assuming no B-modes, a 95% confidence
limit of 10 microkelvin is placed on the amplitude of the E-mode angular power
spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Degree-scale Cosmic Microwave Background Polarization Measurements from Three Years of BICEP1 Data
BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 †â †335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15Ï. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r = 0.03^(+0.27)_(-0.23), or r < 0.70 at 95% confidence level
High-Precision Scanning Water Vapor Radiometers for Cosmic Microwave Background Site Characterization and Comparison
The compelling science case for the observation of B-mode polarization in the
cosmic microwave background (CMB) is driving the CMB community to expand the
observed sky fraction, either by extending survey sizes or by deploying
receivers to potential new northern sites. For ground-based CMB instruments,
poorly-mixed atmospheric water vapor constitutes the primary source of
short-term sky noise. This results in short-timescale brightness fluctuations,
which must be rejected by some form of modulation. To maximize the sensitivity
of ground-based CMB observations, it is useful to understand the effects of
atmospheric water vapor over timescales and angular scales relevant for CMB
polarization measurements. To this end, we have undertaken a campaign to
perform a coordinated characterization of current and potential future
observing sites using scanning 183 GHz water vapor radiometers (WVRs). So far,
we have deployed two identical WVR units; one at the South Pole, Antarctica,
and the other at Summit Station, Greenland. The former site has a long heritage
of ground-based CMB observations and is the current location of the Bicep/Keck
Array telescopes as well as the South Pole Telescope. The latter site, though
less well characterized, is under consideration as a northern-hemisphere
location for future CMB receivers. Data collection from this campaign began in
January 2016 at South Pole and July 2016 at Summit Station. Data analysis is
ongoing to reduce the data to a single spatial and temporal statistic that can
be used for one-to-one site comparison.Comment: Published in Proc. SPIE. Presented at SPIE Astronomical Telescopes
and Instrumentation Conference 10708: Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy XI, June 2018. 10
pages, 11 figure
The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric
array designed to study the polarization of the cosmic microwave background
radiation (CMB) and galactic foreground emission. Such measurements probe the
energy scale of the inflationary epoch, tighten constraints on cosmological
parameters, and verify our current understanding of CMB physics. Robinson
consists of a 250-mm aperture refractive telescope that provides an
instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37
arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of
polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He
sorption fridge system, and coupled to incoming radiation via corrugated feed
horns. The all-refractive optics is cooled to 4 K to minimize polarization
systematics and instrument loading. The fully steerable 3-axis mount is capable
of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s.
Robinson has begun its first season of observation at the South Pole. Given the
measured performance of the instrument along with the excellent observing
environment, Robinson will measure the E-mode polarization with high
sensitivity, and probe for the B-modes to unprecedented depths. In this paper
we discuss aspects of the instrument design and their scientific motivations,
scanning and operational strategies, and the results of initial testing and
observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter
Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275,
200
First measurements of the polarization of the cosmic microwave background radiation at small angular scales from CAPMAP
Polarization results from the Cosmic Anisotropy Polarization MAPper (CAPMAP)
experiment are reported. These are based upon 433 hours, after cuts, observing
a 2 square degree patch around the North Celestial Pole (NCP) with four 90 GHz
correlation polarimeters coupled to optics defining 4\arcmin beams. The
E-mode flat bandpower anisotropy within is measured as
66K; the 95% Confidence level upper limit for B-mode
power within is measured as 38 K.Comment: 4 pages, 2 figures; corrected formatting and comments of second
version, identical in substance. In the first version the wrong concordance
model was used, results (fit to multiplier to concordance model) and figures
have been updated to the proper one. In the first version the central 68%
regions were quoted, while now the 68% confidence intervals of highest
posterior density are give
Angiotensin II-inhibition:effect on Alzheimer's pathology in the aged triple transgenic mouse
ontext. Radio and mm-wavelength observations of Sagittarius A* (Sgr A*), the radio source associated with the supermassive black hole at the center of our Galaxy, show that it behaves as a partially self-absorbed synchrotron-emitting source. The measured size of Sgr A* shows that the mm-wavelength emission comes from a small region and consists of the inner accretion flow and a possible collimated outflow. Existing observations of Sgr A* have revealed a time lag between light curves at 43 GHz and 22 GHz, which is consistent with a rapidly expanding plasma flow and supports the presence of a collimated outflow from the environment of an accreting black hole. Aims. Here we wish to measure simultaneous frequency-dependent time lags in the light curves of Sgr A* across a broad frequency range to constrain direction and speed of the radio-emitting plasma in the vicinity of the black hole. Methods. Light curves of Sgr A* were taken in May 2012 using ALMA at 100 GHz using the VLA at 48, 39, 37, 27, 25.5, and 19 GHz. As a result of elevation limits and the longitude difference between the stations, the usable overlap in the light curves is approximately four hours. Although Sgr A* was in a relatively quiet phase, the high sensitivity of ALMA and the VLA allowed us to detect and fit maxima of an observed minor flare where flux density varied by ~10%. Results. The fitted times of flux density maxima at frequencies from 100 GHz to 19 GHz, as well as a cross-correlation analysis, reveal a simple frequency-dependent time lag relation where maxima at higher frequencies lead those at lower frequencies. Taking the observed size-frequency relation of Sgr A* into account, these time lags suggest a moderately relativistic (lower estimates: 0.5c for two-sided, 0.77c for one-sided) collimated outflow
- âŠ