401 research outputs found

    Probing the Epoch of Early Baryonic Infall Through 21cm Fluctuations

    Full text link
    After cosmological recombination, the primordial hydrogen gas decoupled from the cosmic microwave background (CMB) and fell into the gravitational potential wells of the dark matter. The neutral hydrogen imprinted acoustic oscillations on the pattern of brightness fluctuations due to its redshifted 21cm absorption of the CMB. Unlike CMB temperature fluctuations which probe the power spectrum at cosmic recombination, we show that observations of the 21cm fluctuations at z ~ 20-200 can measure four separate fluctuation modes (with a fifth mode requiring very high precision), thus providing a unique probe of the geometry and composition of the universe.Comment: 5 pages, 4 figures, MNRAS Letters, accepte

    Detecting Early Galaxies Through Their 21-cm Signature

    Full text link
    New observations over the next few years of the emission of distant objects will help unfold the chapter in cosmic history around the era of the first galaxies. These observations will use the neutral hydrogen emission or absorption at a wavelength of 21-cm as a detector of the hydrogen abundance. We predict the signature on the 21-cm signal of the early generations of galaxies. We calculate the 21-cm power spectrum including two physical effects that were neglected in previous calculations. The first is the redistribution of the UV photons from the first galaxies due to their scattering off of the neutral hydrogen, which results in an enhancement of the 21-cm signal. The second is the presence of an ionized hydrogen bubble near each source, which produces a cutoff at observable scales. We show that the resulting clear signature in the 21-cm power spectrum can be used to detect and study the population of galaxies that formed just 200 million years after the Big Bang.Comment: 5 pages, 3 figures, submitted to MNRAS Let

    The escape fraction of ionizing photons from high redshift galaxies

    Full text link
    The fraction of ionizing photons which escape their host galaxy and so are able to ionize hydrogen in the inter-galactic medium (IGM) is a critical parameter in studies of the reionization era and early galaxy formation. In this paper we combine observations of Lyman-alpha absorption towards high redshift quasars with the measured UV luminosity function of high redshift galaxies to constrain the escape fraction (f_esc) of ionizing photons from galaxies at z ~ 5.5-6. The observed Lyman-alpha transmission constrains the escape fraction to lie in the range f_esc ~ 10-25 % (at z ~ 5.5-6). Excluding halos with M< 10^10 M_sun (as might be expected if galaxy formation is suppressed due to the reionization of the IGM) implies a larger escape fraction of f_esc ~ 20-45 %. Using the numerical results to calibrate an analytic relation between the escape fraction and minimum galaxy halo mass we also extrapolate our results to a mass (M~10^8 M_sun) corresponding to the hydrogen cooling threshold. In this case we find f_esc ~ 5-10 %, consistent with observed estimates at lower redshift. We find that the escape fraction of high redshift galaxies must be greater than 5 % irrespepctive of galaxy mass. Based on these results we use a semi-analytic description to model the reionization history of the IGM, assuming ionizing sources with escape fractions suggested by our numerical simulations. We find that the IBG observed at z ~ 5.5-6 implies a sufficient number of ionizing photons to have reionized the Universe by z ~ 6. However, if the minimum mass for star-formation were greater than 10^9 M_sun, the IBG would be over-produced at redshifts less than z ~ 5. In summary, our results support a scenario in which the IGM was reionized by low mass galaxies.Comment: 14 pages, 9 figure

    The signature of the first stars in atomic hydrogen at redshift 20

    Get PDF
    Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about 2 mK in the 21-cm spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of halos and requires the first stars to form in halos of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at z=20 (cosmic age of ~180 Myr), incorporating all these ingredients within a 400 Mpc box. We find that the 21-cm signature of these stars is an enhanced (10 mK) fluctuation signal on the 100-Mpc scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 MHz.Comment: 27 pages, 5 figures, close (but not exact) match to accepted version. Basic results unchanged from first submitted version, but justification strengthened, title and abstract modified, and substantial Supplementary Material added. Originally first submitted for publication on Oct. 12, 201

    Prospects for Redshifted 21-cm observations of quasar HII regions

    Full text link
    The introduction of low-frequency radio arrays over the coming decade is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21cm emission between a large HII region and the surrounding neutral IGM will be the simplest and most easily interpreted signature. We find that an instrument like the planned Mileura Widefield Array Low-Frequency Demonstrator (LFD) will be able to obtain good signal to noise on HII regions around the most luminous quasars, and determine some gross geometric properties, e.g. whether the HII region is spherical or conical. A hypothetical follow-up instrument with 10 times the collecting area of the LFD (MWA-5000) will be capable of mapping the detailed geometry of HII regions, while SKA will be capable of detecting very narrow spectral features as well as the sharpness of the HII region boundary. The MWA-5000 will discover serendipitous HII regions in widefield observations. We estimate the number of HII regions which are expected to be generated by quasars. Assuming a late reionization at z~6 we find that there should be several tens of quasar HII regions larger than 4Mpc at z~6-8 per field of view. Identification of HII regions in forthcoming 21cm surveys can guide a search for bright galaxies in the middle of these regions. Most of the discovered galaxies would be the massive hosts of dormant quasars that left behind fossil HII cavities that persisted long after the quasar emission ended, owing to the long recombination time of intergalactic hydrogen. A snap-shot survey of candidate HII regions selected in redshifted 21cm image cubes may prove to be the most efficient method for finding very high redshift quasars and galaxies.Comment: 14 pages, 8 figures. Submitted to Ap

    Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization

    Full text link
    A large number of faint galaxies, born less than a billion years after the big bang, have recently been discovered. The fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of Mpc, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star formation rate. Here we present evidence for this suppression. We show that the post-reionization galaxies which produced most of the ionizing radiation at a redshift z~5.5, must have had a mass in excess of ~10^{10.6+/-0.4} solar masses or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (~10^8 solar masses). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, prior to the epoch of dwarf galaxy suppression.Comment: 19 pages, 3 figures. Accepted for publication in Nature; press embargo until publishe

    Tomography of the Reionization Epoch with Multifrequency CMB Observations

    Full text link
    We study the constraints that future multifrequency Cosmic Microwave Background (CMB) experiments will be able to set on the metal enrichment history of the Inter Galactic Medium at the epoch of reionisation. We forecast the signal to noise ratio for the detection of the signal introduced in the CMB by resonant scattering off metals at the end of the Dark Ages. We take into account systematics associated to inter-channel calibration, PSF reconstruction errors and innacurate foreground removal. We develop an algorithm to optimally extract the signal generated by metals during reionisation and to remove accurately the contamination due to the thermal Sunyaev-Zel'dovich effect. Although demanding levels of foreground characterisation and control of systematics are required, they are very distinct from those encountered in HI-21cm studies and CMB polarization, and this fact encourages the study of resonant scattering off metals as an alternative way of conducting tomography of the reionisation epoch. An ACT-like experiment with optimistic assumtions on systematic effects, and looking at clean regions of the sky, can detect changes of 3%-12% (95% c.l.) of the OIII abundance (with respect its solar value) in the redshift range z∈z\in [12,22], for reionization redshift zre>10z_{\rm re}>10. However, for zre<10z_{\rm re} <10, it can only set upper limits on NII abundance increments of ∌\sim 60% its solar value in the redshift range z∈z\in [5.5,9], (95% c.l.). These constraints assume that inter-channel calibration is accurate down to one part in 10410^{4}, which constitutes the most critical technical requirement of this method, but still achievable with current technology.Comment: 10 pages, 2 figures, submitted to Astrophysical Journal. Comments are welcom
    • 

    corecore