2 research outputs found

    Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis

    Get PDF
    Galectins are a family of β-galactoside-binding lectins that exert diverse extracellular and intracellular effects. Galectin-7 and galectin-1 show opposing effects on proliferation and survival in different cell types. Galectin-7 is a p53-induced gene and an enhancer of apoptosis, whereas galectin-1 induces tumorigenicity and resistance to apoptosis in several types of cancers. We show here that in cells derived from neurofibromin-deficient (Nf1−/−) malignant peripheral nerve sheath tumors (MPNSTs), Ras inhibition by S-trans,trans-farnesylthiosalicylic-acid (FTS; Salirasib) shifts the pattern of galectin expression. Whereas FTS decreased levels of both active Ras and galectin-1 expression, it dramatically increased both the mRNA and protein expression levels of galectin-7. Galectin-7 accumulation was mediated through JNK inhibition presumably resulting from the observed induction of p53, and was negatively regulated by the AP-1 inhibitor JDP2. Expression of galectin-7 by itself decreased Ras activation in ST88-14 cells and rendered them sensitive to apoptosis. This observed shift in galectin expression pattern together with the accompanying shift from cell proliferation to apoptosis represents a novel pattern of Ras inhibition by FTS. This seems likely to be an important phenomenon in view of the fact that both enhanced cell proliferation and defects of apoptosis constitute major hallmarks of human cancers and play a central role in the resistance of MPNSTs to anti-cancer treatments. These findings suggest that FTS, alone or in combination with chemotherapy agents, may be worth developing as a possible treatment for MPNSTs

    Tumor cells secrete galectin-1 to enhance endothelial cell activity.

    No full text
    Tumor angiogenesis is a key event in cancer progression. Here, we report that tumors can stimulate tumor angiogenesis by secretion of galectin-1. Tumor growth and tumor angiogenesis of different tumor models are hampered in galectin-1-null (gal-1(-/-)) mice. However, tumor angiogenesis is less affected when tumor cells express and secrete high levels of galectin-1. Furthermore, tumor endothelial cells in gal-1(-/-) mice take up galectin-1 that is secreted by tumor cells. Uptake of galectin-1 by cultured endothelial cells specifically promotes H-Ras signaling to the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) kinase (Mek)/Erk cascade and stimulates endothelial cell proliferation and migration. Moreover, the activation can be blocked by galectin-1 inhibition as evidenced by hampered membrane translocation of H-Ras.GTP and impaired Raf/Mek/Erk phosphorylation after treatment with the galectin-1-targeting angiogenesis inhibitor anginex. Altogether, these data identify galectin-1 as a proangiogenic factor. These findings have direct implications for current efforts on galectin-1-targeted cancer therapies.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore