481 research outputs found

    High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions

    Get PDF
    Numerical simulations of 15 orbits of an equal-mass binary black hole system are presented. Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5 cycles before merger, are compared with those from quasi-circular zero-spin post-Newtonian (PN) formulae. The cumulative phase uncertainty of these comparisons is about 0.05 radians, dominated by effects arising from the small residual spins of the black holes and the small residual orbital eccentricity in the simulations. Matching numerical results to PN waveforms early in the run yields excellent agreement (within 0.05 radians) over the first ∼15\sim 15 cycles, thus validating the numerical simulation and establishing a regime where PN theory is accurate. In the last 15 cycles to merger, however, {\em generic} time-domain Taylor approximants build up phase differences of several radians. But, apparently by coincidence, one specific post-Newtonian approximant, TaylorT4 at 3.5PN order, agrees much better with the numerical simulations, with accumulated phase differences of less than 0.05 radians over the 30-cycle waveform. Gravitational-wave amplitude comparisons are also done between numerical simulations and post-Newtonian, and the agreement depends on the post-Newtonian order of the amplitude expansion: the amplitude difference is about 6--7% for zeroth order and becomes smaller for increasing order. A newly derived 3.0PN amplitude correction improves agreement significantly (<1<1% amplitude difference throughout most of the run, increasing to 4% near merger) over the previously known 2.5PN amplitude terms.Comment: Updated to agree with published version (various minor clarifications; added description of AH finder in Sec IIB; added discussion of tidal heating in Sec VC

    Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam

    Get PDF
    This Letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rates and energy spectra of charged current ν_μ interactions are compared in two detectors located along the beam axis at distances of 1 and 735 km. With 1.27×10^(20) 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336±14 events. The data are consistent with ν_μ disappearance via oscillations with Δm_(32)^2|=2.74_(-0.26)^(+0.44)×10^(-3)  eV^2 and sin^2(2θ_(23))>0.87 (68% C.L.)

    First observations of separated atmospheric ν_μ and ν̅ _μ events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of ν_μ and ν̅ _μ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving R^(data)_(up/down/R^(MC)_(up/down) = 0:62^(+0.19)_(0:14)(stat.) ± 0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field ν_μ and ν̅ _μ interactions are separated. The ratio of ν̅ _μ to ν_μ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R^(data)_(ν_μ/ν̅ _μ) / R^(MC)_(ν_μ/ν̅ _μ) = 0.96^(+0:38)_(0.27)(stat.) ± 0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for ν_μ and ν̅ _μ

    The NuMI neutrino beam

    Get PDF
    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed

    Direct Observation of Broadband Coating Thermal Noise in a Suspended Interferometer

    Full text link
    We have directly observed broadband thermal noise in silica/tantala coatings in a high-sensitivity Fabry-Perot interferometer. Our result agrees well with the prediction based on indirect, ring-down measurements of coating mechanical loss, validating that method as a tool for the development of advanced interferometric gravitational-wave detectors.Comment: Final version synchronized with publication in Phys. Lett.

    Stable Superstring Relics and Ultrahigh Energy Cosmic Rays

    Get PDF
    One of the most intriguing experimental results of recent years is the observation of Ultrahigh Energy Cosmic Rays (UHECRs) above the GZK cutoff. Plausible candidates for the UHECR primaries are the decay products of a meta--stable matter state with mass of order O(10^{12-15 GeV}), which simultaneously is a good cold dark matter candidate. We study possible meta-stable matter states that arise from Wilson line breaking of GUT symmetries in semi-realistic heterotic string models. In the models that we study the exotic matter states can be classified according to patterns of SO(10) symmetry breaking. We show that cryptons, which are states that carry fractional electric charge ±1/2\pm1/2, and are confined by a hidden gauge group cannot produce viable dark matter. This is due to the fact that, in addition to the lightest neutral bound state, cryptons give rise to meta-stable charged bound states. However, these states may still account for the UHECR events. We argue that the uniton, which is an exotic Standard Model quark but carries ``fractional'' U(1)_{Z'} charge, as well as the singleton, which is a Standard Model singlet with ``fractional'' U(1)_{Z'} charge do provide viable dark matter candidates and can at the same time explain the observed UHECR events.Comment: 24 pages. 5 figure

    Solid-state laser intensity stabilization at the 10(-8) level

    Get PDF
    A high-power, low-noise photodetector, in conjunction with a current shunt actuator, is used in an ac-coupled servo to stabilize the intensity of a 10-W cw Nd:YAG laser. A relative intensity noise of 1 x 10(-8) Hz(-1/2) at 10 Hz is achieved.Jameson Rollins, David Ottaway, Michael Zucker, Rainer Weiss, and Richard Abbot

    Reducing theoretical uncertainties in mb and lambda1

    Full text link
    We calculate general moments of the lepton energy spectrum in inclusive semileptonic B -> X_c l \nu decay. Moments which allow the determination of mb^{1S} and lambda1 with theoretical uncertainties Delta(mb^{1S}) ~ 0.04 GeV and Delta(lambda1) ~ 0.05 GeV^2 are presented. The short distance 1S mass is used to extract a mass parameter free of renormalon ambiguities. Moments which are insensitive to mb and lambda1 and therefore test the size of the 1/mb^3 matrix elements and the validity of the OPE are also presented. Finally, we give an expression for the total branching ratio with a lower cut on the lepton energy, which allows one to eliminate a source of model dependence in current determinations of |Vcb| from B -> X_c l \nu decay.Comment: 8 pages, one figur

    The NuMI neutrino beam

    Get PDF
    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed
    • …
    corecore