112 research outputs found

    Serpin overexpression in Plasmodium-infected midgut cells

    Get PDF
    Summary The design of effective, vector-based malaria transmission blocking strategies relies on a thorough understanding of the molecular and cellular interactions that occur during the parasite sporogonic cycle in the mosquito. During Plasmodium berghei invasion, transcription from the SRPN10 locus, encoding four serine protease inhibitors of the ovalbumin family, is strongly induced in the mosquito midgut. Herein we demonstrate that intense induction as well as redistribution of SRPN10 occurs specifically in the parasite-invaded midgut epithelial cells. Quantitative analysis establishes that in response to epithelial invasion, SRPN10 translocates from the nucleus to the cytoplasm and this is followed by strong SRPN10 overexpression. The invaded cells exhibit signs of apoptosis, suggesting a link between this type of intracellular serpin and epithelial damage. The SRPN10 gene products constitute a novel, robust and cell-autonomous marker of midgut invasion by ookinetes. The SRPN10 dynamics at the subcellular level confirm and further elaborate the 'time bomb' model of P. berghei invasion in both Anopheles stephensi and Anopheles gambiae. In contrast, this syndrome of responses is not elicited by mutant P. berghei ookinetes lacking the major ookinete surface proteins, P28 and P25. Molecular markers with defined expression patterns, in combination with mutant parasite strains, will facilitate dissection of the molecular mechanisms underlying vector competence and development of effective transmission blocking strategies

    Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA

    Get PDF
    Background: NF-κB/Rel transcription factors play important roles in immunity and development in mammals and insects. Their activity is regulated by their cellular localization, homo- and heterodimerization and association with other factors on their target gene promoters. Gambif1 fromAnopheles gambiae is a member of the Rel family and a close homologue of the morphogen Dorsal, which establishes dorsoventral polarity in theDrosophila embryo.Results: We present the crystal structure of the N-terminal specificity domain of Gambif1 bound to DNA. This first structure of an insect Rel protein–DNA complex shows that Gambif1 binds a GGG half-site element using a stack of three arginine sidechains. Differences in affinity to Dorsal binding sites in target gene promoters are predicted to arise from base changes in these GGG elements. An arginine that is conserved in class II Rel proteins (members of which contain a transcription activation domain) contacts the outermost guanines of the DNA site. This previously unseen specific contact contributes strongly to the DNA-binding affinity and might be responsible for differences in specificity between Rel proteins of class I and II.Conclusions: The Gambif1–DNA complex structure illustrates how differences in Dorsal affinity to binding sites in developmental gene promoters are achieved. Comparison with other Rel–DNA complex structures leads to a general model for DNA recognition by Rel proteins

    PrPCWD lymphoid cell targets in early and advanced chronic wasting disease of mule deer

    Get PDF
    Up to 15% of free-ranging mule deer in northeastern Colorado and southeastern Wyoming, USA, are afflicted with a prion disease, or transmissible spongiform encephalopathy (TSE), known as chronic wasting disease (CWD). CWD is similar to a subset of TSEs including scrapie and variant Creutzfeldt¿Jakob disease in which the abnormal prion protein isoform, PrPCWD, accumulates in lymphoid tissue. Experimental scrapie studies have indicated that this early lymphoid phase is an important constituent of prion replication interposed between mucosal entry and central nervous system accumulation. To identify the lymphoid target cells associated with PrPCWD, we used triple-label immunofluorescence and high-resolution confocal microscopy on tonsils from naturally infected deer in advanced disease. We detected PrPCWD primarily extracellularly in association with follicular dendritic and B cell membranes as determined by frequent co-localization with antibodies against membrane bound immunoglobulin and CD21. There was minimal co-localization with cytoplasmic labels for follicular dendritic cells (FDC). This finding could indicate FDC capture of PrPCWD, potentially in association with immunoglobulin or complement, or PrPC conversion on FDC. In addition, scattered tingible body macrophages in the germinal centre contained coarse intracytoplasmic aggregates of PrPCWD, reflecting either phagocytosis of PrPCWD on FDC processes, apoptotic FDC or B cells, or actual PrPCWD replication within tingible body macrophages. To compare lymphoid cell targets in early and advanced disease, we also examined: (i) PrPCWD distribution in lymphoid cells of fawns within 3 months of oral CWD exposure and (ii) tonsil biopsies from preclinical deer with naturally acquired CWD. These studies revealed that the early lymphoid cellular distribution of PrPCWD was similar to that in advanced disease, i.e. in a pattern suggesting FDC association. We conclude that in deer, PrPCWD accumulates primarily extracellularly and associated with FDCs and possibly B cells ¿ a finding which raises questions as to the cells responsible for pathological prion productio

    Malaria Immunity in Man and Mosquito: Insights Into Unsolved Mysteries of a Deadly Infectious Disease

    No full text
    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite’s complex life cycle with a view towards developing the tools that will contribute to the prevention of disease and death and ultimately the goal of malaria eradication. In so doing we hope to inspire immunologists to participate in defeating this devastating disease

    Mosquito cellular immunity at single-cell resolution

    Get PDF
    Hemocytes limit the capacity of mosquitoes to transmit human pathogens. Here we profile the transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti mosquito vectors. This revealed functional diversity of hemocytes, with different subtypes of granulocytes expressing distinct and evolutionarily conserved subsets of effector genes. A new cell type in A. gambiae, which we term megacyte, is defined by a unique transmembrane protein marker (TM7318) and high expression of LPS-Induced TNF-alpha transcription factor 3 (LL3). Knock-down experiments indicate that LL3 mediates hemocyte differentiation during immune priming. We identify and validate two main hemocyte lineages and find evidence of proliferating granulocyte populations. This atlas of medically relevant invertebrate immune cells at single cell resolution identifies cellular events that underpin mosquito immunity to malaria infection

    Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice.

    Get PDF
    Plasmodium falciparum has exerted tremendous selective pressure on genes that improve survival in severe malarial infections. Systemic lupus erythematosus (SLE) is an autoimmune disease that is six to eight times more prevalent in women of African descent than in women of European descent. Here we provide evidence that a genetic susceptibility to SLE protects against cerebral malaria. Mice that are prone to SLE because of a deficiency in FcγRIIB or overexpression of Toll-like receptor 7 are protected from death caused by cerebral malaria. Protection appears to be by immune mechanisms that allow SLE-prone mice better to control their overall inflammatory responses to parasite infections. These findings suggest that the high prevalence of SLE in women of African descent living outside of Africa may result from the inheritance of genes that are beneficial in the immune control of cerebral malaria but that, in the absence of malaria, contribute to autoimmune disease

    The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection

    Get PDF
    Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies

    The Aedes aegypti Toll Pathway Controls Dengue Virus Infection

    Get PDF
    Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway

    In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major Dengue virus vector <it>Aedes aegypti </it>requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of <it>Ae. aegypti </it>midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes.</p> <p>Results</p> <p>We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (k<sub>cat</sub>/K<sub>M</sub>) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin.</p> <p>Conclusions</p> <p>These data show that <it>in vitro </it>activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.</p
    • …
    corecore